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Data Mining Algorithms In R
In general terms, Data Mining comprises techniques and algorithms, for determining interesting patterns from large
datasets. There are currently hundreds (or even more) algorithms that perform tasks such as frequent pattern mining,
clustering, and classification, among others. Understanding how these algorithms work and how to use them
effectively is a continuous challenge faced by data mining analysts, researchers, and practitioners, in particular
because the algorithm behavior and patterns it provides may change significantly as a function of its parameters. In
practice, most of the data mining literature is too abstract regarding the actual use of the algorithms and parameter
tuning is usually a frustrating task. On the other hand, there is a large number of implementations available, such as
those in the R project, but their documentation focus mainly on implementation details without providing a good
discussion about parameter-related trade-offs associated with each of them.
This Wikibook aims to fill this gap by integrating three pieces of information for each technique: description and
rationale, implementation details, and use cases. The description and rationale of each technique provide the
necessary background for understanding the implementation and applying it to real scenarios. The implementation
details not only expose the algorithm design, but also explain its parameters, in the light of the rationale provided
previously. Finally, the use cases provide an experience of the algorithms use on synthetic and real datasets.
The choice of the R project as the computational platform associated with this Wikibook stems from its popularity
(and thus critical mass), ease of programming, good performance, and an increasing use in several fields, such as
bioinformatics and finances, among others.
If you want to learn how to program in the R language, read the book R Programming.

Contents
1.1. Dimensionality Reduction
2.2. Frequent Pattern Mining
3.3. Sequence Mining
4.4. Clustering
5.5. Classification
6.6. R Packages

External links
• R Reference Card for Data Mining [1]

• R Data Mining [2]

• All basics of R [3]

• Online course in Data Mining in R [4]

• Computing for Data Analysis (Free online course) [5]

http://en.wikipedia.org/wiki/Data_Mining
http://en.wikibooks.org/w/index.php?title=R_Programming
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Dimensionality_Reduction
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Sequence_Mining
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Classification
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/R_Packages
http://www.rdatamining.com
http://rdatamining.wordpress.com
http://www.cran.r-project.org
http://www.statistics.com/data-mining-r/
https://class.coursera.org/compdata-003
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Clustering
1.1. K-Means
2.2. Hybrid Hierarchical Clustering
3.3. Expectation Maximization (EM)
4.4. Dissimilarity Matrix Calculation
5.5. Hierarchical Clustering
6.6. Bayesian Hierarchical Clustering
7.7. Density-Based Clustering
8.8. K-Cores
9.9. Fuzzy Clustering - Fuzzy C-means
10.10. RockCluster
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1.1. SVM
2.2. penalizedSVM
3.3. kNN
4.4. Outliers
5.5. Decision Trees
6.6. Naïve Bayes
7.7. adaboost
8.8. JRip

http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/K-Means
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Hybrid_Hierarchical_Clustering
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Expectation_Maximization_%28EM%29
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Dissimilarity_Matrix_Calculation
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Hierarchical_Clustering
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Bayesian_Hierarchical_Clustering
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Density-Based_Clustering
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/K-Cores
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Fuzzy_Clustering_-_Fuzzy_C-means
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/RockCluster
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Biclust
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Partitioning_Around_Medoids_%28PAM%29
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/CLUES
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Self-Organizing_Maps_%28SOM%29
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/Proximus
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Clustering/CLARA
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Classification/SVM
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Classification/penalizedSVM
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Classification/kNN
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Classification/Outliers
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Classification/Decision_Trees
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Classification/Na%C3%AFve_Bayes
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Classification/adaboost
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Classification/JRip
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R Packages
In this section, we will discuss about R packages that are related to datamining.

Contents
1.1. RWeka
2.2. gausspred
3.3. optimsimplex
4.4. CCMtools
5.5. FactoMineR
6.6. nnet

Principal Component Analysis

Introduction
This chapter presents the Principal Component Analysis (PCA) technique as well as its use in R project for statistical
computing. First we will introduce the technique and its algorithm, second we will show how PCA was implemented
in the R language and how to use it. Finally, we will present an example of an application of the technique in a data
mining scenario. In the end of the chapter you will find references for further information.

Principal Component Analysis
PCA is a dimensionality reduction method in which a covariance analysis between factors takes place. The original
data is remapped into a new coordinate system based on the variance within the data. PCA applies a mathematical
procedure for transforming a number of (possibly) correlated variables into a (smaller) number of uncorrelated
variables called principal components. The first principal component accounts for as much of the variability in the
data as possible, and each succeeding component accounts for as much of the remaining variability as possible.
PCA is useful when there is data on a large number of variables, and (possibly) there is some redundancy in those
variables. In this case, redundancy means that some of the variables are correlated with one another. And because of
this redundancy, PCA can be used to reduce the observed variables into a smaller number of principal components
that will account for most of the variance in the observed variables.
PCA is recommended as an exploratory tool to uncover unknown trends in the data. The technique has found
application in fields such as face recognition and image compression, and is a common technique for finding patterns
in data of high dimension.

http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/gausspred
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/CCMtools
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/FactoMineR
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/nnet
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Algorithm
The PCA algorithm consists of 5 main steps:
1.1. Subtract the mean: subtract the mean from each of the data dimensions. The mean subtracted is the average

across each dimension. This produces a data set whose mean is zero.
2.2. Calculate the covariance matrix:

where is a matrix which each entry is the result of calculating the covariance between two separate
dimensions.

3.3. Calculate the eigenvectors and eigenvalues of the covariance matrix.
4.4. Choose components and form a feature vector: once eigenvectors are found from the covariance matrix, the next

step is to order them by eigenvalue, highest to lowest. So that the components are sorted in order of significance.
The number of eigenvectors that you choose will be the number of dimensions of the new data set. The objective
of this step is construct a feature vector (matrix of vectors). From the list of eigenvectors take the eigenvectors
selected and form a matrix with them in the columns:

FeatureVector = (eig_1, eig_2, ..., eig_n)
5.5. Derive the new data set. Take the transpose of the FeatureVector and multiply it on the left of the original data

set, transposed:
FinalData = RowFeatureVector x RowDataAdjusted

where RowFeatureVector is the matrix with the eigenvectors in the columns transposed (the eigenvectors are
now in the rows and the most significant are in the top) and RowDataAdjusted is the mean-adjusted data
transposed (the data items are in each column, with each row holding a separate dimension).

Implementation
We choose princomp method from stats package for this tutorial.
• R package: stats
• Method: princomp
• Documentation: princomp [1]

princomp is a generic method with "formula" and "default" methods from stats package which performs a principal
components analysis on the given numeric data matrix and returns the results as an object of class princomp.
Usage

princomp(x, ...)

•• S3 method for class 'formula:

princomp(formula, data = NULL, subset, na.action, ...)

•• Default S3 method:

princomp(x, cor = FALSE, scores = TRUE, covmat = NULL, subset = 

rep(TRUE, nrow(as.matrix(x))), ...)

•• S3 method for class 'princomp':

predict(object, newdata, ...)

Arguments

- formula

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/princomp.html
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a formula with no response variable, referring only to numeric variables.
- data

an optional data frame containing the variables in the formula formula. By default the variables are taken
from environment(formula)

- subset

an optional vector used to select rows (observations) of the data matrix x.
- na.action

a function which indicates what should happen when the data contain NAs. The default is set by the na.action
setting of options, and is na.fail if that is unset. The ‘factory-fresh’ default is na.omit.

- x
a numeric matrix or data frame which provides the data for the principal components analysis.

- cor

a logical value indicating whether the calculation should use the correlation matrix or the covariance matrix.
(The correlation matrix can only be used if there are no constant variables.)

- scores

a logical value indicating whether the score on each principal component should be calculated.
- covmat

a covariance matrix, or a covariance list as returned by cov.wt (and cov.mve or cov.mcd from package
MASS). If supplied, this is used rather than the covariance matrix of x.

- ...
arguments passed to or from other methods. If x is a formula one might specify cor or scores.

- object

Object of class inheriting from "princomp"
- newdata

An optional data frame or matrix in which to look for variables with which to predict. If omitted, the scores are
used. If the original fit used a formula or a data frame or a matrix with column names, newdata must contain
columns with the same names. Otherwise it must contain the same number of columns, to be used in the same
order.

Value

The princomp method returns a list with class "princomp" containing the following components:
- sdev

a formula with no response variable, referring only to numeric variables.
- loadings

the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
- center

the means that were subtracted.
- scale

the scalings applied to each variable.
- n.obs

the number of observations.
- scores
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if scores = TRUE, the scores of the supplied data on the principal components. These are non-null only if x
was supplied, and if covmat was also supplied if it was a covariance list. For the formula method, napredict()
is applied to handle the treatment of values omitted by the na.action.

- call

the matched call.
- na.action

if relevant.

Visualization
The print method for these objects prints the results in a nice format and the plot method produces a screen plot.
There is also a biplot method.
Examples

require(graphics)

summary(pc.cr <- princomp(USArrests, cor = TRUE))

loadings(pc.cr)

plot(pc.cr)

biplot(pc.cr)

Case Study
To illustrate the PCA technique for dimensionality reduction, a simple case study will be shown.

Scenario
In the field of information retrieval (IR), queries and documents can be represented in a vector space. Generally,
several features are used to describe a document retrieved by a query such as TF-IDF and PageRank measures.
Occasionally, it can be necessary to visualize documents in a 2-dimensional space. To do this, PCA could be used.

Dataset
More recently, Microsoft released the LETOR benchmark data sets for research on LEarning TO Rank, which
contains standard features, relevance judgments, data partitioning, evaluation tools, and several baselines. LETOR
contains several datasets for ranking settings derived from the two query sets and the Gov2 web page collection. The
5-fold cross validation strategy is adopted and the 5-fold partitions are included in the package. In each fold, there
are three subsets for learning: training set, validation set and testing set. The datasets can be downloaded from
LETOR site [2].
A typical document in a LETOR dataset is described as follows:

0 qid:1 1:1.000000 2:1.000000 3:0.833333 4:0.871264 5:0 6:0 7:0 8:0.941842 9:1.000000 10:1.000000 

11:1.000000 12:1.000000 13:1.000000 14:1.000000 15:1.000000 16:1.000000 17:1.000000 18:0.719697 19:0.729351 20:0 

21:0 22:0 23:0.811565 24:1.000000 25:0.972730 26:1.000000 27:1.000000 28:0.922374 29:0.946654 30:0.938888 

31:1.000000 32:1.000000 33:0.711276 34:0.722202 35:0 36:0 37:0 38:0.798002 39:1.000000 40:1.000000 

41:1.000000 42:1.000000 43:0.959134 44:0.963919 45:0.971425 #docid = 244338

http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Execution
LETOR files can not be imported 'as is', but using the following script, it is possible to convert LETOR format to
other accepted by R, as can be seen below:

cat train.txt | grep "qid:1 " | gawk '{ printf("doc_"$50); for 

(i=3;i<=47;i++) { split($i,a,":"); printf(", "a[2]); } printf("\n");

 }' > letor.data

After that, 'letor.data' will be seen as follows:

doc_244338, 1.000000, 1.000000, 0.833333, 0.871264, 0, 0, 0, 0.941842, 1.000000, 1.000000, 

1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 0.719697, 0.729351, 

0, 0, 0, 0.811565, 1.000000, 0.972730, 1.000000, 1.000000, 0.922374, 0.946654, 0.938888, 

1.000000, 1.000000, 0.711276, 0.722202, 0, 0, 0, 0.798002, 1.000000, 1.000000, 1.000000, 

1.000000, 0.959134, 0.963919, 0.971425

Now, it is possible to load 'letor.data' file to R and run PCA to plot documents in a 2-dimensional space, as follows:

data=read.table("letor.data",sep=",")

summary(pc.cr <- princomp(data[,2:46]))

loadings(pc.cr)

library(lattice)

pc.cr$scores

pca.plot <- xyplot(pc.cr$scores[,2] ~ pc.cr$scores[,1])

pca.plot$xlab <- "First Component"

pca.plot$ylab <- "Second Component"

pca.plot
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Results
The script above generates the following chart:

Analysis
As we can see, despite documents being represented by multiple features (>45), PCA was able to find 2 principal
components that were used to plot all documents in a 2-dimensional chart.

References
1. ^ Mardia, K. V., J. T. Kent and J. M. Bibby (1979). "Multivariate Analysis", London: Academic Press.
2. ^ Venables, W. N. and B. D. Ripley (2002). "Modern Applied Statistics with S", Springer-Verlag.
3. Principal Components Analysis and Redundancy Analysis Lab, Montana State University. Link [3].
4. Visualising and exploring multivariate datasets using singular value decomposition and self organising maps

from Bioinformatics Zen. Link [4].
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[4] http:/ / www. bioinformaticszen. com/ 2007/ 07/ exploring-multivariate-data-using-svd-and-som/
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Singular Value Decomposition
In this chapter we will take a look at Singular Value Decomposition (SVD), a matrix's factorization method that uses
the knowledge of [[w:Linear AlgebraLinear Algebra in order to make such decompositions.

Singular Value Decomposition
In data mining, this algorithm can be used to better understand a database by showing the number of important
dimensions and also to simplify it, by reducing of the number of attributes that are used in a data mining process.
This reduction removes unnecessary data that are linearly dependent in the point of view of Linear Algebra. For
example, imagine a database which contains a field that stores the water's temperature on several samples and
another that stores its state (solid,liquid or gas). Its easy to see that the second field is dependent from the first and,
therefore, SVD could easily show us that it is not important for the analysis.
Principal Component Analysis (PCA) is a specific case of SVD.

Algorithm
SVD is the factorization of a matrix of real or complex numbers, that has rows and columns, into:

where is a matrix whose dimensions are , is another matrix whose dimensions are , and is
a matrix whose dimensions are , the same dimensions as .
Besides:

and 
where and are Identity matrix whose size are respectively and .
The columns of are the left singular vectors of the matrix , and the columns of (or the rows of ) are
the right singular vectors.
The matrix is a diagonal matrix, whose diagonal values are the singular values of the matrix . The singular
value in a row of is never less than the value of a row below. All singular values are greater than .
To compute the SVD is to find the eigenvalues and the eigenvectors of and . The eigenvectors of

are the columns of and the eigenvectors of are the columns of . The singular values of , in
the diagonal of matrix , are the square root of the common positive eigenvalues of and .
If and have he same number of eigenvalues, is a square matrix; else, the eigenvalues of the
matrix that has less eigenvalues are eigenvalues of the matrix that has more eigenvalues. Therefore, the singular
values of are the eigenvalues of the matrix, between and , that has less eigenvalues.
The number of singular values of a matrix is the rank of that matrix, that is the number of linearly independent
columns or rows of a matrix. The rank is not greater than , because this is the number of elements of the
diagonal of the matrix. The singular values are elements of the diagonal of the matrix . The number of positive
singular values equals the rank of the matrix.
Therefore, the algorithm is:
1. Compute normally.
2. Compute the eigenvalues and the eigenvectors of normally.
3. Compute .
4. Compute the eigenvalues and the eigenvectors of .
5. Compute the square root of the common positive eigenvalues of and .
6. Finally, assign the computed values to , and .

http://en.wikibooks.org/w/index.php?title=Linear_Algebra
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Dimensionality_Reduction/Principal_Component_Analysis
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Example

X = 

XXT = 

The eigenvalues of XXT are:
12.744563, 4.000000, and 1.255437

The eigenvectors of XXT are:
1.1. 0.5417743, 0.5417743, 0.6426206
2. 0.7071068, -0.7071068, -2.144010 x 10-16

3.3. 0.4544013, 0.4544013, -0.7661846

XTX = 

The eigenvalues of XTX are:
12.744563, 4.000000, 1.255437, and (5.940557 x 10-18)

The eigenvectors of XTX are:
1.1. 0.6635353, 0.3035190, 0.4835272, 0.4835272
2. 0.0000000, 0.5181041 x 10-16, -0.7071068, 0.7071068
3.3. -0.5565257, 0.8110957, 0.1272850, 0.1272850
4.4. 0.5000000, 0.5000000, -0.5000000, -0.5000000
The singular values of X are the square root of the common eigenvalues of XTX and XXT:

Therefore:

A = 

Finally, X is decomposed:
X = UAVT =
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Implementation
R has a built in function which calculates SVD, called 'svd()'.
It, by default, receives a R's native matrix as argument and returns an frame, that contains U, A and V.

Arguments
If it is not necessary that all singular values and vectors are computed, one can tell svd() the exact number of needed
elements.
This can be achieved by assigning these values to nu and nv which represent the number of left and right singular
vectors needed, respectively.
For example, in order to calculate only half of these vectors, one could do:

svd(X, nu = min(nrow(X), ncol(X)) / 2, nv = min(nrow(X), ncol(X))/2)

Returned object
s = svd(X)

Considering:
X = UAVT

The returned object is a data structure that contains three fields:
s$d is the vector that contains the singular values of X, that was got from the diagonal of matrix A.
s$u is the matrix whose columns contain the left singular vectors of X. Its number of rows is the same number of
rows of X and its number of columns is the number passed to the parameter nu. Note that if nu is 0, this matrix is not
created.
s$v is the matrix whose columns contain the right singular vectors of X. Its number of rows is the same number of
columns of X and its number of columns is the number passed to the parameter nv. Note that if nv is 0, this matrix is
not created.

Examples
Execute the following command sequences in the R terminal or as a R program and see the results:
Example 1:

dat <- seq(1,240,2)

X <- matrix(dat,ncol=12)

s <- svd(X)

A <- diag(s$d)

s$u %*% A %*% t(s$v) #  X = U A V'

Example 2:

dat <- seq(1,240,2)

X <- matrix(dat,ncol=12)

http://en.wikibooks.org/w/index.php?title=R_Programming/Data_types%23Matrix
http://en.wikibooks.org/w/index.php?title=R_Programming/Data_types%23Data_Frames
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s <- svd(X, nu = nrow(X), nv = ncol(X))

A <- diag(s$d)

A <- cbind(A, 0)  # Add two columns with zero, in order to A have the same dimensions of X.

A <- cbind(A, 0)

s$u %*% A %*% t(s$v) #  X = U A V'

Case Study

Scenario
In order to better visualize the results of SVD, in ths case study we will work with a matrix that represents an image,
so any change on the matrix can be easily observed.

Input Data
To work with an image on R, one should install the package rimage:

> install.packages("rimage")

Let's then load the image into R, converting it to a greyscale one. This way, we will end up with an binary matrix,
where 1 means white, and 0 black.

library(rimage)

tux <- read.jpeg('tux.jpeg')

tux <- imagematrix(tux,type='grey')

We can see the result of this import:

plot(tux)
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In order to help us with this dimension reduction, lets make a little help function, which will receive our tux and the
numbers of dimension we want and return our new tux.

reduce <- function(A,dim) {

    #Calculates the SVD

    sing <- svd(A)

    #Approximate each result of SVD with the given dimension

    u<-as.matrix(sing$u[, 1:dim])

    v<-as.matrix(sing$v[, 1:dim])

    d<-as.matrix(diag(sing$d)[1:dim, 1:dim])

    #Create the new approximated matrix

    return(imagematrix(u%*%d%*%t(v),type='grey'))

}

Execution and output
Now that we have our matrix, lets se how many singular values it has:

tux_d <- svd(tux)

length(tux_d$d)

[1] 335

So we have 335 singular values on this matrix. Lets first try to reduce it to only one singular value:

plot(reduce(tux,1))

http://en.wikibooks.org/w/index.php?title=File:Tux_grey.png
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As we can see, this approximation removes a lot of useful information from our matrix. If it was a database, we
surely would have lost important data.
Lets try with 10% (35) singular values:

plot(reduce(tux,35))

http://en.wikibooks.org/w/index.php?title=File:Tux_1.png
http://en.wikibooks.org/w/index.php?title=File:Tux_35.png
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Analysis
With only 10% of the real data we are able to create a very good approximation of the real data. Moreover, with this
method we can remove noises and linear dependent elements by using only the most important singular values. This
is very useful on data mining, since is hard to identify if a database is clear and, if not, which elements are useful or
not to our analysis.

References
•• Fundamentals of Data Mining Algorithms - Mohammed J. Zaki, Wagner Meira Jr. - Section 7.4
•• Singular value decomposition
• http:/ / www. ats. ucla. edu/ stat/ r/ code/ svd_demos. htm
• http:/ / stat. ethz. ch/ R-manual/ R-patched/ library/ base/ html/ svd. html

Feature Selection

Feature Selection in R with the FSelector Package

Introduction
In Data Mining, Feature Selection is the task where we intend to reduce the dataset dimension by analyzing and
understanding the impact of its features on a model. Consider for example a predictive model C1A1 + C2A2 + C3A3 =
S, where Ci are constants, Ai are features and S is the predictor output. It is interesting to understand how important
are the used features (A1, A2 and A3) and what are their relevance to the model and their correlation with S. Such
analysis allow us to select a subset of the original features, reducing the dimension and complexity of future steps on
the Data Mining process. During a subset selection, we try to identify and remove as much of the irrelevant and
redundant information as possible.
Techniques for Feature Selection can be divided in two approaches: feature ranking and subset selection. In the
first approach, features are ranked by some criteria and then features above a defined threshold are selected. In the
second approach, one searches a space of feature subsets for the optimal subset. Moreover, the second apprach can
be split in three parts:
1. Filter approaches: you select the features first, then you use this subset to execute a classification algorithm;
2. Embedded approaches the feature selection occurs as part a classification algorithm;
3. Wrapper approaches an algorithm for classification is applied over the dataset in order to identify the best

features.
The FSelector Package for R offers algorithms for filtering attributes (e.g. cfs, chi-squared, information gain, linear
correlation) and algorithms for wrapping classifiers and search attribute subset space (e.g. best-first search,
back-ward search, forward search, hill climbing search). The package also makes it possible to choose subsets of
features based on attributes' weights by performing different ways of cutoff.
The FSelector Package was created by Piotr Romanski and this article is based on the version 0.16, released in April
11, 2009.

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://www.ats.ucla.edu/stat/r/code/svd_demos.htm
http://stat.ethz.ch/R-manual/R-patched/library/base/html/svd.html
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The Feature Ranking Approach
As we explained, in the ranking approach, features are ranked by some criteria and those which are above a defined
threshold are selected. A general algorithm can be considered for such approach where you just need to decide which
one if the best ranking criteria to be used. In the F-Selector Package, such criteria is represented by a set of functions
that calculate weights to your features according to a model. All of this elements will be explained in this text.

Feature Ranking Algorithm

The general algorithm for the Feature Ranking Approach is:

for each feature F_i

   wf_i = getFeatureWeight(F_i)

   add wf_i to weight_list

sort weight_list

choose top-k features

We can translate such algorithm idea to R language by these commands:

#load a dataset and use it as the main source of data

library(mlbench)

data(HouseVotes84)

#calculate weights for each atribute using some function

weights <- SOME_FUNCTION(Class~., HouseVotes84)

print(weights)

#select a subset of 5 features with the lowest weight

subset <- cutoff.k(weights, 5)

#print the results

f <- as.simple.formula(subset, "Class")

print(f)

On the first part of the code above, we use the function library to load the package mlbench which contains a
collection of artificial and real-world machine learning benchmark problems, including, e.g., several data sets from
the UCI repository.(http:/ / cran. r-project. org/ web/ packages/ mlbench/ index. html). After that, we use the mlbench
dataset HouseVotes84 (United States Congressional Voting Records 1984) as the working data source for the later
steps. Instead of using the HouseVotes84, you can also define your own dataset and provide it as the input for the
algorithm.

http://cran.r-project.org/web/packages/mlbench/index.html).
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The HouseVotes84 data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key
votes identified by the CQA. The CQA contains 16 variables, and consider ninve different types of votes represented
by three classes: yea (voted for, paired for, announced for), nay (voted against, paired against, announced against)
and unknown (voted present, voted present to avoid conflict of interest, did not vote or otherwise make a position
known).
On the second part of the code above, we calculate weights for each attribute using some function. This function
must be selected by the user and they are listed later on this text. The output of those functions will be a list of
features and its weights according to the chosen technique, and that will be available in the weights array. You can
print the weights like we do using the command print.
On the third part of the code, we define a cut-off of the top-5 features of the weights array. By using the function
cutoff.k, we inform the array name and the k value, that is 5 in our case. The result will be stored in another array,
called subset, cointaining the 5 features with the highest rank weight.
On the fourth part of the code, you can print the final model as a simple formula, composed by the features subset
present in the subset array, and the predictable feature names Class.

Available Feature Ranking Techniques in FSelector Package

All the listed techniques below can be used to generate rank weights for features. The first parameter, formula, is a
symbolic description of a model (e.g. Class~. for a model where all the features are used do predict the feature
Class). The second parameter, data, is the target data to be considered in the model.

Chi-squared Filter

Usage:

chi.squared(formula, data)

Correlation Filter

Usage for Pearson’s correlation:

linear.correlation(formula, data)

Usage for Spearman’s correlation:

rank.correlation(formula, data)

Entropy-Based Filter

Usage for Information Gain:

information.gain(formula, data)

Usage for Gain Ratio:

gain.ratio(formula, data)

Usage for Symmetrical Uncertainty:

symmetrical.uncertainty(formula, data)
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OneR Algorithm

Usage:

oneR(formula, data)

Random Forest Filter

Usage:

random.forest.importance(formula, data, importance.type = 1)

Where the importance.type parameter specify the type of importance measure (1=mean decrease in accuracy,
2=mean decrease in node impurity).

The Feature Subset Selection Approach
In the feature subset selection approach, one searches a space of feature subsets for the optimal subset. Such
approach is present on the FSelector package by wrappers techniques (e.g. best-first search, back-ward search,
forward search, hill climbing search). Those techniques works by informing a function that takes a subset and
generate an evaluation value for that subset. A search is performed in the subsets space until the best solution can be
found.

Feature Subset Selection Algorithm

The general algorithm for the Feature Subset Selection approach is:

S = all subsets

for each subset s in S

   evaluate(s)

return (the best subset)

We can translate the algorithm idea in R by using these commands:

#load a dataset and use it as the main source of data

library(mlbench)

data(HouseVotes84)

#define the evaluation function

evaluator <- function(subset) {

  #here you must define a function that returns a double value to evaluate the given subset

  #consider high values for good evaluation and low values for bad evaluation.

  return(something)

}
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#perform the best subset search

subset <- MY_FUNCTION(data, evaluator)

#prints the result

f <- as.simple.formula(subset, "Class")

print(f)

As in the first example on this text, we use again the HouseVotes84 dataset from the mlbench library. We must
define a evaluation function that wil do some calculus over a given subset and return a high value for a good subset.
Later, all you have to do is choose a search strategy and you can also print the selection.

Feature Subset Search Techniques Available in FSelector Package

The FSelector Package offers some functions to search for the best subset selection. In most of them, the attributes
parameters is a character vector of all attributes to search (the set of features that will be parted in subsets during the
search), and the eval.fun parameter is a function taking as first parameter a character vector of all attributes and
returning a numeric indicating how important a given subset is. The CFS and the Consistency techniques encapsulate
such process by using the best first approach, so, you just have to inform the symbolic model and the data, like in the
ranking approach.

Best First Search

Usage:

best.first.search(attributes, eval.fun)

Exhaustive Search

Usage:

exhaustive.search(attributes, eval.fun)

Greedy Search

Usage for forward greedy search:

forward.search(attributes, eval.fun)

Usage for backward greedy search:

backward.search(attributes, eval.fun)
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Hill Climbing Search

Usage:

hill.climbing.search(attributes, eval.fun)

CFS Filter

Usage:

cfs(formula, data)

Consistency Based Filter

Usage:

consistency(formula, data)

The Eclat Algorithm

The Eclat Algorithm
The Eclat algorithm is used to perform itemset mining. Itemset mining let us find frequent patterns in data like if a
consumer buys milk, he also buys bread. This type of pattern is called association rules and is used in many
application domains.
The basic idea for the eclat algorithm is use tidset intersections to compute the support of a candidate itemset
avoiding the generation of subsets that does not exist in the prefix tree.

Algorithm
The Eclat algorithm is defined recursively. The initial call uses all the single items with their tidsets. In each
recursive call, the function IntersectTidsets verifies each itemset-tidset pair with all the others pairs

to generate new candidates . If the new candidate is frequent, it is added to the set . Then,
recursively, it finds all the frequent itemsets in the branch. The algorithm searches in a DFS manner to find all
the frequent sets.

Implementation
The eclat algorithm can be found in the arule package of R system.

   * R package: arules

   * Method: eclat

   * Documentation : arules package [1]

Usage

eclat(data, parameter = NULL, control = NULL)

Arguments

data

object of class transactions or any data structure which can be coerced into transactions (e.g., binary matrix,
data.frame).

parameter

http://r-forge.r-project.org/projects/arules/


The Eclat Algorithm 22

object of class ECparameter or named list (default values are: support 0.1 and maxlen 5)
control

object of class ECcontrol or named list for algorithmic controls.
Value

Returns an object of class itemsets
Example

data("Adult")

## Mine itemsets with minimum support of 0.1.

itemsets <- eclat(Adult, parameter = list(supp = 0.1, maxlen = 15))

Visualization
The arules package implements some visualization methods for itemsets, which are the return type for the eclat
algorithm. Here are some examples:
Example 1

data("Adult") 

## Mine frequent itemsets with Eclat.

fsets <- eclat(Adult, parameter = list(supp = 0.5))

## Display the 5 itemsets with the highest support.

fsets.top5 <- SORT(fsets)1:5?

inspect(fsets.top5)

## Get the itemsets as a list

as(items(fsets.top5), "list")

## Get the itemsets as a binary matrix

as(items(fsets.top5), "matrix")

## Get the itemsets as a sparse matrix, a ngCMatrix from package Matrix.

## Warning: for efficiency reasons, the ngCMatrix you get is transposed

as(items(fsets.top5), "ngCMatrix")

Example 2

## Create transaction data set.

data <- list(

  c("a","b","c"),

  c("a","b"),

  c("a","b","d"),

  c("b","e"),

  c("b","c","e"),

  c("a","d","e"),

  c("a","c"),

  c("a","b","d"),
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  c("c","e"),

  c("a","b","d","e")

)

t <- as(data, "transactions")

## Mine itemsets with tidLists.

f <- eclat(data, parameter = list(support = 0, tidLists = TRUE))

## Get dimensions of the tidLists.

dim(tidLists(f))

## Coerce tidLists to list.

as(tidLists(f), "list")

## Inspect visually.

image(tidLists(f))

##Show the Frequent itemsets and respectives supports

inspect(f)

Result of example 2

http://en.wikibooks.org/w/index.php?title=File%3AEx-visualization1.jpg
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# items support

1 {b, c, e} 0.1

2 {a, b, c} 0.1

3 {a, c} 0.2

4 {b, c} 0.2

5 {c, e} 0.2

6 {a, b,d, e} 0.1

7 {a, d, e} 0.2

8 {b, d, e} 0.1

9 {a, b, d} 0.3

10 {a, d} 0.4

11 {b, d} 0.3

12 {d, e} 0.2

13 {a, b, e} 0.1

14 {a, e} 0.2

15 {b, e} 0.3

16 {a, b} 0.5

17 {a} 0.7

18 {b} 0.7

19 {e} 0.5

20 {d} 0.4

21 {c} 0.4

Use Case
To see some real example of the use of the Eclat algorithm it will be used some data from the northwind [2] database.
The northwind database is freely available for download and represents data from an enterprise. In this example it
will be used the table order details from the database. The order details table is used to relate the orders with
products (in a n to n relationship). The Eclat algorithm will be used to find frequent patterns from this data to see if
there are any products that are bought together.

Scenario

Given the data from the order details table from the northwind database, find all the frequent itemsets with support =
0.1 and length of at least 2.

Input Data

The order details table has the fields:
ID

primary key
Order ID

foreign key from table Orders
Product ID

http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en
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foreign key from table Products
Quantity

the quantity bought
Discount

the discount offered
Unit Price

the unit price of the product
To use the data, some pre-processing is necessary. The table may have many rows that belongs to the same order, so
the table was converted in a way that all the rows for one order became only one row in the new table containing the
product id's of the products belonging to that order. The fields ID, order id, quantity, discount and unit price was
discarded. The data was saved in a txt file called northwind-orders.txt. The file was scripted in a way ready to be
loaded as a list object in R.

Implementation

To run the example the package arules need to be loaded in R.

First, the data is loaded in a list object in R
## 1041 transactions is loaded, the listing below was shortened

## some duplicates transactions was introduced to produce some results 

for the algorithm

data = list(

 

c("2","3","4","6","7","8","10","12","13","14","16","20","23","32","39","41","46","52","55","60","64","66","73","75","77"),

 c("11","42","72"),

 c("14","51"),

 c("41","51","65"),

 c("22","57","65"),

 ...)

Second, the eclat algorithm is used.

itemsets <- eclat(data, parameter = list(support = 0.1, minlen=2, tidLists = TRUE, target="frequent itemsets"))

parameter specification:

 tidLists support minlen maxlen            target   ext

     TRUE     0.1      2      5 frequent itemsets FALSE

algorithmic control:

 sparse sort verbose

      7   -2    TRUE

eclat - find frequent item sets with the eclat algorithm

version 2.6 (2004.08.16)         (c) 2002-2004   Christian Borgelt

create itemset ... 

set transactions ...[78 item(s), 1041 transaction(s)] done [0.00s].

sorting and recoding items ... [3 item(s)] done [0.00s].

creating bit matrix ... [3 row(s), 1041 column(s)] done [0.00s].

writing  ... [4 set(s)] done [0.00s].
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Creating S4 object  ... done [0.00s].

Output Data

The itemsets object holds the output of the execution of the eclat algorithm. As can be seen above, 4 sets was
generated. To see the results it can be used:

inspect(itemsets)

  items   support

1 {11,           

   42,           

   72}  0.1940442

2 {42,           

   72}  0.1940442

3 {11,           

   42}  0.1940442

4 {11,           

   72}  0.1959654

Analysis

As can be seen above, there are 4 frequent itemsets as result of the eclat algorithm. This output was induced by the
replication of the transaction {11, 42, 72} many times in the data. This result shows that the tuples
{11,42,72},{42,72} and {11,42} has a support of 19,40%; and the tuple {11,72} has a support of 19,60%.
The product id's 11, 42 and 72 represents the products Queso Cabrales, Singaporean Hokkien Fried Mee and
Mozzarella di Giovanni, respectively. So, the output of the eclat algorithm suggests a strong frequent shop pattern of
buying this items together.

Variations

PPV, PrePost, and FIN Algorithm

These three algorithms were propsed by Deng et al , and are based on three novel data structures called Node-list ,
N-list , and Nodeset respectively for facilitating the mining process of frequent itemsets. They are sets of nodes in a
FP-tree with each node encoding with pre-order traversal and post-order traversal. Compared with Node-lists, N-lists
and Nodesets are more efficient. This causes the efficiency of PrePost and FIN is higher than that of PPV . See for
more details.
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arulesNBMiner

Introduction
The technique to be discussed in this chapter is used in frequent itemset mining. There are several situations which
people are interested on co-occurrence of two or more item of a set. It is important to establish which items co-occur,
since based on them, association rules can be extracted between itemsets [1]. A typical example of an application is
about a supermarket when one discovery customers who buy meat and beer also tend to buy coal. Thus, a frequent
item set would be meat-beer-coal and an association rule would be customers, in general, who buy meat and beer,
have more chances to buy coal.
Many works have dealt with the problem of frequent itemset mining. Most of them show the necessity of a
min_support threshold, which is an itemset minimum frequency in the data and in general defined by the miner user.
Besides, these studies have as goal to mine a complete set of frequent itemsets that satisfy min_support [2]. The
application of a minimum support results in several assumptions which are rarely discussed or verified. One
assumptions is items occur in the database following a, possibly unknown, but stable process and that the items
occur in the database with roughly similar frequencies. Nevertheless, in the real world, transactions data have a
frequency distribution highly skewed with almost items occurring in an infrequent way while just some of them
occur with high frequency. In database where this phenomenon happens, interesting patterns are not found since
some of the associated items are too infrequent to satisfy the user-specified minimum support [3].
Some algorithms such as TFP were developed in a way that a user do not need determine a min_support, however,
he needs to inform the minimum size of itemset (min_l) and the number of itemset which he desires mining (k).
Furthermore, the TFP algorithms just mine frequent closed itemset.[2]. Again, the user has a parameter (min_l)
which he should specify before mining the data, what is a subtle decision.
Therefore, this chapter presents an algorithm, which is implemented at R-package and uses a simple stochastic
model (Negative Binomal model or NB-model) to estimate a minimum support utilizing knowledge of the process
which generates transaction data and allows for highly skewed frequency distributions. The name of package in R
program is arulesNBMiner that is the Java implementation of a depth first search algorithm to mine NB-frequent
itemsets of NB-precise rules [4]. Beside the algorithm utilize the information contained in own data structure to
estimate the minimum support, it uses a precision limit to estimate min_support and for each k-itemset plus 1
extension it calculates a different minimum support.

http://www.tandfonline.com/doi/abs/10.1080/18756891.2010.9727736
http://info.scichina.com:8084/sciFe/EN/abstract/abstract508369.shtml
http://www.sciencedirect.com/science/article/pii/S0957417414000463
http://r-forge.r-project.org/projects/arules/
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en
http://www.tandfonline.com/doi/abs/10.1080/18756891.2010.9727736
http://info.scichina.com:8084/sciFe/EN/abstract/abstract508369.shtml
http://www.sciencedirect.com/science/article/pii/S0957417414000463


arulesNBMiner 28

Technique to be discussed

Algorithm

Function NBSelect

1. r
max

 = max(c.count) in L

2. r
rescale

 = sum(c.count) in L

3. for each tuple [c,c.count] ∈ L do n
obs

 [c.count]++

4. do

5. 

6. while (precision ≥ π ∧ (p−−) > 0)
7. return {c| [c,c.count] ∈ L ∧ c.count > p}
where

l = the pattern for which candidate items are selected

L = a data structure which holds count information for items which co-occur with pattern l; 

we use tuples c, c.count , where c represents a candidate  item and c.count the count.

n = the total number of available items

 = estimated parameters for the data set

π = user-specified precision threshold

Implementation (description of used modules and packages)
The first thing one has to do to use NBMiner is installing the NBMiner package. This package has three
dependencies packages: arules (http:/ / cran. r-project. org/ web/ packages/ arules/ index. html) which provides the
infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and
association rules), Matrix (http:/ / cran. r-project. org/ web/ packages/ Matrix/ index. html) which is classes and
methods for dense and sparse matrices and operations on them using Lapack and SuiteSparse, and lettice (http:/ /
cran. r-project. org/ web/ packages/ lattice/ index. html) which is a framework for data visualization developed at the
Bell Labs. Besides, the user has to install on computer the Sun Java(TM) Development Kit (JDK) 6, since the
NBMiner uses a package called rJava which is part of JDK. This must be installed in the user operational system.
Installation of the dependencies packages can be performed within the R environment using the function
"install.packages(“package name”)". The name of NBMiner package is arulesNBMiner.

install.packages(“arulesNBMiner”)      

After the user installed the necessaries packages, he must load them. This can be done using the function
"library(package name)".

library(arulesNBMiner)      

However, before we show how to use the NBMiner package, it is necessary to show how to load the data. Here, we
are using a data on csv format. In this format each line is a transaction like the example below:

http://cran.r-project.org/web/packages/arules/index.html)
http://cran.r-project.org/web/packages/Matrix/index.html)
http://cran.r-project.org/web/packages/lattice/index.html)
http://cran.r-project.org/web/packages/lattice/index.html)
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Employment Education Marital Occupation Sex Accounts

Private College Separated Service Female USA

Private Associate Unmarried Transport Male Jamaica

Private HSgrad Divorced Clerical Male USA

Private Bachelor Civil Repair Male USA

Private College Civil Executive Male USA

Private HSgrad Civil Service Male USA

Using the function "read.table()" on R environment, we are able to load the data. This function creates a "data.frame"
object. Its syntax is:

object name<-read.table(“filename”, header=TRUE/FALSE,sep=”,”)

The argument header indicates the data has or does not a header while the sep indicates which character is being used
to separate the elements. Later, the user has to transform this data frame object in a transaction object. For that, he
can use the function "as()". Its syntax is:

object name<-as(data frame object,”transactions”)

It is important to mention the user has to load the NBMiner package before he uses the function as with parameter
transaction. Furthermore, there is another data format that some R functions can read and transform it in a
transaction object. The user can utilize a binary format like the example below:

1 1 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0

1 0 0 1 0 0 0 1 0

1 0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 1

1 0 0 0 1 0 0 0 1

Here, each line represents a transaction and each column represents a term of the database. The number 1 means
presence of that term in that transaction, while 0 means no presence. To read this data, user can first utilize the
function "scan()". It creates a vector object, and its syntax is:

object name<-scan(“file name”,sep=”,”)

After that, it is necessary to transform the vector object in a matrix object. This is performed using the function
"dim()". Its syntax is:

dim(vector object)<-c(dim1,dim2) 

Dim1 and Dim2 are the dimensions of the matrix which the user want creating. If the user wants, he can name each
row and column of the matrix using the function "dimnames()". Its syntax is:

dimnames(matrix object)<-list(pridim=c(names),segdim=c(names))

Where pridim is a vector with first dimension names, and segdim is a vector with second dimension names. Finally,
this object can be transformed in transaction object using the function "as()". Its syntax is:

object name<-as(matrix object,”ItemMatrix”)
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Soon after the user loaded the package and the data, it is necessary to create the parameters object using the function
of NBMiner called "NBMinerParameters()". This function reads the data and extracts from them some parameters
which will be used in the next step. The syntax of this function is:
object name<-NBMinerParameters(data object, pi=#, theta=#, maxlen=#, minlen=#, trim=#, verb=TRUE/FALSE, plot=TRUE/FALSE, rules=TRUE/FALSE)

where: 

# = numbers

data object = the data as an object of class transaction

pi = precision threshold

theta = pruning parameter

maxlen = maximal number of items in found itemsets (default = 5)

minlen = minimum number of items in found itemsets (default = 1)

trim = fraction of incidences to trim off the tail of the frequency distribution of the data

verbose = use verbose output for the estimation procedure

plot = plot the model

rules = mine NB-precise rules instead of NB-frequent itemsets

After the user perform this procedure, he is able to run the algorithm to mine his data. For that, one will use the
function called "NBMiner()". Its syntax is:

object name<-NBMiner(data object, parameter=object parameter, control = list(verb=TRUE, debug=FALSE))

If the user uses the option rules=TRUE when he created the object parameter, the algorithm will mine the
NB-precise rules. Otherwise, the same algorithm will mine the NB-frequent itemsets. Finally, we summarized the
necessaries commands to use the NBMiner package for mining tasks using the first data structure mentioned above,
these are below:
library(package name)

object name<-read.table(“filename”, header=TRUE/FALSE,sep=”,”)

object name<-as(data frame object,”transaction”)

object name<-NBMinerParameters(data object, pi=#, theta=#, maxlen=#, minlen=#, trim=#, verb=TRUE/FALSE, plot=TRUE/FALSE, rules=TRUE/FALSE)

object name<-NBMiner(data object, parameter=object parameter, control = list(verb=TRUE, debug=FALSE

Visualization
To visualize data information contained in a “data.frame” object just use the object name. Here, we use table as
object name:

table = read.table("data",sep=",",header=TRUE)

table
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# Employment Education Marital Occupation Sex Accounts

1 Private College Separated Service Female USA

2 Private Associate Unmarried Transport Male Jamaica

3 Private HSgrad Divorced Clerical Male USA

4 Private Bachelor Civil Repair Male USA

5 Private College Civil Executive Male USA

6 Private Hsgrad Civil Service USA

However, when the same principle is used in “transactions” format, we have just the number of transactions and
items generated by the "as()" function:

tableT = as(table,"transactions")

tableT

 transactions in sparse format with

 6 transactions (rows) and

 18 items (columns)

Use “inspect()” function to visualize the result of the conversion to the “transactions” format:

inspect(tableT)

# items transactionID

1 {Employment=Private,Education=College,Marital=Separated,Occupation=Service,Sex=Female,Accounts=USA} 1

2 {Employment=Private,Education=Associate,Marital=Unmarried,Occupation=Transport,Sex=Male,Accounts=Jamaica} 2

(...)

To summarize the data information in "transaction" format use "summary()".

summary(tableT)

transactions as itemMatrix in sparse format with

6 rows (elements/itemsets/transactions) and

18 columns (items) and a density of 0.3333333 

most frequent items:

Employment=Private    Sex=Male    Accounts=USA 

        6                5            5 

Marital=Civil    Education=College  (Other) 

        3                2            15 

element (itemset/transaction) length distribution:

sizes

6 

6 

  Min.    1st Qu.  Median  Mean   3rd Qu.   Max. 

     6       6       6       6       6       6 

includes extended item information - examples:

       labels                  variables          levels

1        Employment=Private       Employment         Private

2       Education=Associate        Education       Associate
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3        Education=Bachelor        Education        Bachelor

includes extended transaction information - examples:

transaction            ID

1                        1

2                         2

3                         3

To see labels of the items generated in the conversion to transaction format use “itemInfo()”:

itemInfo(tableT)

      labels              variables            levels

1      Employment=Private       Employment            Private

2          Education=Associate        Education                Associate

3           Education=Bachelor        Education                 Bachelor

4      Education=College        Education                  College

5      Education=HSgrad        Education             HSgrad

6      Marital=Civil          Marital                    Civil

7      Marital=Divorced       Marital                 Divorced

8      Marital=Separated          Marital                Separated

9      Marital=Unmarried          Marital                Unmarried

10         Occupation=Clerical       Occupation                 Clerical

11        Occupation=Executive       Occupation                Executive

12      Occupation=Repair       Occupation             Repair

13          Occupation=Service       Occupation            Service

14      Occupation=Transport       Occupation                Transport

15      Sex=Female             Sex                   Female

16      Sex=Male              Sex                     Male

17      Accounts=Jamaica         Accounts                  Jamaica

18      Accounts=USA               Accounts             USA

Use “labels()” to see only the labels of the itens and transactions:

labels(tableT)

$items

[1]      "Employment=Private"      "Education=Associate"            "Education=Bachelor"   

[4]      "Education=College"     "Education=HSgrad"            "Marital=Civil"        

[7]      "Marital=Divorced"      "Marital=Separated"              "Marital=Unmarried"    

[10]      "Occupation=Clerical"   "Occupation=Executive"        "Occupation=Repair"    

[13]      "Occupation=Service"    "Occupation=Transport"        "Sex=Female"           

[16]      "Sex=Male"              "Accounts=Jamaica"            "Accounts=USA"

$transactionID

[1] "1" "2" "3" "4" "5" "6"

To see NB mined results use the same commands above mentioned to “transactions” data:
paramA <- NBMinerParameters(tableT, trim = 0.01, pi = 0.999, theta = 0.8, rules = TRUE, plot = FALSE, verbose = FALSE, minlen=3, maxlen=5)

tableNB <- NBMiner(tableT, parameter = paramA, control = list(verb = FALSE, debug=FALSE))

inspect(head(tableNB))

      lhs                                 rhs                            precision

1      {Education=HSgrad, Sex=Male}             => {Employment=Private}          0.9991467
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2      {Sex=Male, Accounts=USA}             => {Marital=Civil}            0.9999421

3      {Sex=Male, Accounts=USA}             => {Education=HSgrad}            0.9977636

4      {Education=College, Accounts=USA}       => {Employment=Private}            0.9982934

5      {Marital=Civil, Accounts=USA}             => {Sex=Male}                    0.9999752

6      {Employment=Private, Sex=Male}            => {Accounts=USA}            0.9999948

Where "lhs" is the antecedent of the rules and de "rhs" is the consequent of the rules.
We can also show the data distribution in the space with “image()” function:

image(tableNB)

Case study

Scenario
It contains artificial data created by Graham Williams (developer of Rattle) and is supplied with Rattle. To quote
from the Rattle documentation: "It consists of 2,000 fictional clients who have been audited, perhaps for compliance
with regard to the amount of a tax refund that is being claimed. For each case an outcome is recorded (whether the
taxpayer's claims had to be adjusted or not) and any amount of adjustment that resulted is also recorded."

Input data
Available on http:/ / cs. anu. edu. au/ Student/ comp3420/ mining/ audit. csv.

Execution
table = read.table("audit.csv",sep=",",header=TRUE)

trans = as(table,"transactions")

paramA = NBMinerParameters(tableT, trim = 0.01, pi = 0.999, theta = 0.8, rules = TRUE, plot = FALSE, verbose = FALSE, minlen=3, maxlen=5)

transNB = NBMiner(tableT, parameter = paramA, control = list(verb = FALSE, debug=FALSE))

Output
transNB

set of 18158 rules 

tableNB = as(trans,"data.frame")

write.table(tableNB,file="auditNB.csv",sep=",")

Analysis

http://cs.anu.edu.au/Student/comp3420/mining/audit.csv.
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rules consequent precedent A precedent B precedent C precedent D

92 Accounts=China Employment=PSState Education=Master Occupation=Professional

4721 Accounts=China Employment=PSState Education=Master

4762 Accounts=China Employment=PSState Occupation=Professional

4857 Accounts=China Education=Master Marital=Civil Occupation=Professional Sex=Male

5871 Accounts=China Education=Master Occupation=Professional

6131 Accounts=China Marital=Civil Occupation=Professional

10269 Accounts=China Education=Master Occupation=Professional Sex=Male

10386 Accounts=China Education=Master Marital=Civil Occupation=Professional

14791 Accounts=China Marital=Civil Occupation=Professional Sex=Male

Based on the data above we can note that when the Marital state is “Civil” and the "Occupation" is "Professional" we
have an "Chinese" account.
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The Apriori Algorithm

Introduction
In computer science and data mining, Apriori is a classic algorithm for learning association rules. Apriori is
designed to operate on databases containing transactions. As is common in association rule mining, given a set of
itemsets, the algorithm attempts to find subsets which are common to at least a minimum number C of the itemsets.
Apriori uses a "bottom up" approach, where frequent subsets are extended one item at a time (a step known as
candidate generation), and groups of candidates are tested against the data. The algorithm terminates when no further
successful extensions are found.
Apriori uses breadth-first search and a tree structure to count candidate item sets efficiently. It generates candidate
item sets of length from item sets of length . Then it prunes the candidates which have an infrequent sub
pattern. According to the downward closure lemma, the candidate set contains all frequent -length item sets. After
that, it scans the transaction database to determine frequent item sets among the candidates.
Apriori, while historically significant, suffers from a number of inefficiencies or trade-offs, which have spawned
other algorithms. Candidate generation generates large numbers of subsets (the algorithm attempts to load up the
candidate set with as many as possible before each scan). Bottom-up subset exploration (essentially a breadth-first
traversal of the subset lattice) finds any maximal subset S only after all of its proper subsets.
The quest to mine frequent patterns appears in many domains. The prototypical application is market basket analysis,
i.e., to mine the sets of items that are frequent bought together, at a supermarket by analyzing the customer shopping
carts (the so-called “market baskets”). Once we mine the frequent sets, they allow us to extract association rules
among the item sets, where we make some statement about how likely are two sets of items to co-occur or to
conditionally occur. For example, in the weblog scenario frequent sets allow us to extract rules like, “Users who visit
the sets of pages main, laptops and rebates also visit the pages shopping-cart and checkout”, indicating, perhaps, that
the special rebate offer is resulting in more laptop sales. In the case of market baskets, we can find rules like,
“Customers who buy Milk and Cereal also tend to buy Bananas”, which may prompt a grocery store to co-locate
bananas in the cereal aisle.

Algorithm
The following is a formal statement of the problem: Let τ be a set of literals, called items. Let

be a set of transactions, where each transaction is a set of items such that  ⊆ τ. Associated with each
transaction is a unique identifier, called its . We say that a transaction contains , a set of some items in
τ, if  ⊆ . An association rule is an implication of the form  ⇒ , where  ⊂ τ,  ⊂ τ, and  ∩ =
∅. The rule  ⇒ holds in the transaction set with confidence if % of transactions in that contain

also contain . The rule  ⇒ has support in the transaction set if % of transactions in 
contain  ∪ . Given a set of transactions , the problem of mining association rules is to generate all
association rules that have support and confidence greater than the user-specified minimum support (called minsup)
and minimum confidence (called minconf ) respectively.
The problem is usually decomposed into two subproblems. One is to find those itemsets whose occurrences exceed a 
predefined threshold in the database; those itemsets are called frequent or large itemsets. The second problem is to 
generate association rules from those large itemsets with the constraints of minimal confidence. Suppose one of the 
large itemsets is Lk, Lk = {I1, I2, … , Ik}, association rules with this itemsets are generated in the following way: 
the first rule is {I1, I2, … , Ik-1}⇒ {Ik}, by checking the confidence this rule can be determined as interesting or 
not. Then other rule are generated by deleting the last items in the antecedent and inserting it to the consequent, 
further the confidences of the new rules are checked to determine the interestingness of them. Those processes
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iterated until the antecedent becomes empty. Since the second subproblem is quite straight forward, most of the
researches focus on the first subproblem. The Apriori algorithm finds the frequent sets In Database .
Let ,  ⊆ I be any two itemsets. Observe that if  ⊆ , then sup(X) ≥ sup(Y ), which leads to the following
two corollaries:
• If X is frequent, then any subset Y ⊆ X is also frequent.
• If X is not frequent, then any superset Y ⊇ X cannot be frequent.
Based on the above observations, we can significantly improve the itemset mining algorithm by reducing the number
of candidates we generate, by limiting the candidates to be only those that will potentially be frequent. First we can
stop generating supersets of a candidate once we determine that it is infrequent, since no superset of an infrequent
itemset can be frequent. Second, we can avoid any candidate that has an infrequent subset. These two observations
can result in significant pruning of the search space.

• Find frequent set .
•• Join Step.

• is generated by joining with itself
•• Prune Step.

• Any -itemset that is not frequent cannot be a subset of a frequent -itemset, hence should be
removed.

where
• ( : Candidate itemset of size )
• ( : frequent itemset of size )

Apriori Pseudocode

Apriori 
 large 1-itemsets that appear in more than transactions 

while 

Generate 

for transactions 

Subset 
for candidates 

return 

Implementation
The R package that implements association rule mining is called arules, and it can be found at http:/ / cran. r-project. 

org/ web/ packages/ arules/ index. html (Details how to install R can be found here http:/ / cran. r-project. org/ bin/ 

linux/ ubuntu). In package arules we interface free reference implementations of Apriori and Eclat by Christian 
Borgelt (Borgelt and Kruse, 2002; Borgelt, 2003)3. The code is called directly from R by the functions apriori() and 
éclat() and the data objects are directly passed from R to the C code and back without writing to external files. The 
implementations can mine frequent itemsets, and closed and maximal frequent itemsets. In addition, apriori() can

http://cran.r-project.org/web/packages/arules/index.html
http://cran.r-project.org/web/packages/arules/index.html
http://cran.r-project.org/bin/linux/ubuntu).
http://cran.r-project.org/bin/linux/ubuntu).
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also mine association rules.
Installation of the dependencies packages can be performed within the R environment using the function
"install.packages(“package name”)". The name of the package in question is “arules”. To use this package you need
R environment with version 2.7.0 at least (details how to update R can be found in http:/ / cran. r-project. org/ bin/
linux/ ubuntu).

install.packages(“arules”)

After the user installed the necessaries packages, he must load them. This can be done using the function
"library(package name)".

library(arules)

Visualization

Reading the data

Transactions can be read from files in the basket format, with the command read.transactions. The parameters for
read.transactions are:
file

format read.transactions can get data structured in multiple formats, one of them being basket.
separator(sep)

One example of it’s use would be:

tr<-read.transactions("teste",format="basket",sep=",")

The object ”tr” is used to store the transactions read from the file named ”teste”, where each item is separated by a ”,”.
”teste” could be, for example:

A,B,C

B,C

A,B,D

A,B,C,D

A

B

One way to visualize the data is inspect(object). For example:

inspect(tr)

items

1 {A,

   B,

   C}

2 {B,

   C}

3 {A,

   B,

   D}

4 {A,

   B,

   C,

http://cran.r-project.org/bin/linux/ubuntu).
http://cran.r-project.org/bin/linux/ubuntu).
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   D}

5 {A}

6 {B}

Additionally, you can visually inspect binary incidence matrices, or plot the frequency of items sets:

image(tr)

itemFrequencyPlot(tr, support = 0.1)

To show the number of items in transactions read from the file named ”teste” do:

length(tr)

[1] 6

Rules

The function to mine frequent itemsets, association rules or association hyperedges, using the Apriori algorithm,
takes 2 parameters:
Data: the object that contains the data
parameter: a multi-dimensional parameter to set up support and confidence
For example, using the dataset gathered in the previous section:

rules <- apriori(tr, parameter= list(supp=0.5, conf=0.5)) 

The rules can be visualized with the command inspect:

inspect(rules)

    rhs    support confidence lift

1 {} => {C} 0.5000000 0.5000000 1.0

2 {} => {A} 0.6666667 0.6666667 1.0

3 {} => {B} 0.8333333 0.8333333 1.0

4 {C} => {B} 0.5000000 1.0000000 1.2

5 {B} => {C} 0.5000000 0.6000000 1.2

6 {A} => {B} 0.5000000 0.7500000 0.9

7 {B} => {A} 0.5000000 0.6000000 0.9

To get a summary of the rules’ characteristics, the function ”summary” can be used:

summary(rules)

set of 7 rules

rule length distribution (lhs + rhs):sizes

1 2

3 4

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.

  1.000   1.000   2.000   1.571   2.000   2.000

summary of quality measures:

    support         confidence          lift
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 Min.   :0.5000   Min.   :0.5000   Min.   :0.900

 1st Qu.:0.5000   1st Qu.:0.6000   1st Qu.:0.950

 Median :0.5000   Median :0.6667   Median :1.000

 Mean   :0.5714   Mean   :0.7071   Mean   :1.029

 3rd Qu.:0.5833   3rd Qu.:0.7917   3rd Qu.:1.100

 Max.   :0.8333   Max.   :1.0000   Max.   :1.200

mining info:

 data ntransactions support confidence

   tr             6     0.5        0.5

Outher quality measures of the rules can be displaed with:

interestMeasure(rules, c("support", "chiSquare", "confidence", 

"conviction",

      "cosine", "coverage", "leverage", "lift", "oddsRatio"), tr)

    support chiSquare confidence conviction    cosine  coverage    leverage

1 0.5000000       NaN  0.5000000  1.0000000 0.7071068 1.0000000  0.00000000

2 0.6666667       NaN  0.6666667  1.0000000 0.8164966 1.0000000  0.00000000

3 0.8333333       NaN  0.8333333  1.0000000 0.9128709 1.0000000  0.00000000

4 0.5000000       1.2  1.0000000        Inf 0.7745967 0.5000000  0.08333333

5 0.5000000       1.2  0.6000000  1.2500000 0.7745967 0.8333333  0.08333333

6 0.5000000       0.6  0.7500000  0.6666667 0.6708204 0.6666667 -0.05555556

7 0.5000000       0.6  0.6000000  0.8333333 0.6708204 0.8333333 -0.05555556

  lift oddsRatio

1  1.0       NaN

2  1.0       NaN

3  1.0       NaN

4  1.2       Inf

5  1.2       Inf

6  0.9         0

7  0.9         0

To calculate a single measure and add it to the quality slot:
quality(rules) <- cbind(quality(rules), hyperConfidence = interestMeasure(rules, method = "hyperConfidence", Income))

inspect(head(SORT(rules, by = "hyperConfidence")))

  lhs    rhs   support confidence lift hyperConfidence

1 {C} => {B} 0.5000000  1.0000000  1.2             0.5

2 {B} => {C} 0.5000000  0.6000000  1.2             0.5

3 {}  => {C} 0.5000000  0.5000000  1.0             0.0

4 {}  => {A} 0.6666667  0.6666667  1.0             0.0

5 {}  => {B} 0.8333333  0.8333333  1.0             0.0

6 {A} => {B} 0.5000000  0.7500000  0.9             0.0

Finally, to send the output to a file use:

sink("sink-examp.txt")

inspect(head(SORT(rules, by = "hyperConfidence")))
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...

Case study
We now present a brief case study to illustrate the use of apriori and the package arules in a real data set.

Scenario
Spam is the abuse of electronic messaging systems (including most broadcast media, digital delivery systems) to
send unsolicited bulk messages indiscriminately. Many filters are designed to stop spam in its tracks, but such filters
are often left behind by the spammers' obfuscating techniques. One of such filters is SpamAssassin, a well known
filter that relies on machine learning and fixed rules for filtering. SpamAssassin, however, doesn't consider the
possible relations between its rules.

Input Data

22406 spams were used in this case study, ranging from 1998 to 2009, collected from the public spam corpus
SpamArchive (http:/ / untroubled. org/ spam/ ). Each spam was analyzed by SpamAssassin, and the rules found were
analyzed, as well its year. For example, a particular spam would be: YEAR=1998 INVALID_DATE
INVALID_TZ_EST meaning this was a spam from 1998 in which SpamAssassin accused two rules:
INVALID_DATE and INVALID_TZ_EST.

Implementation

The output from each spam filtered through SpamAssassin was saved in a file named output. The following
commands were issued:
library("arules"); #Using the package

tr<-read.transactions("output",format="basket",sep=" ") #Reading each spam from the output file, separated by ' ' (single spaces).

rules <- apriori(tr, parameter= list(supp=0.05, conf=0.3)) #Running apriori

inspect(rules) #Visualizing the association rules found.

Output Data

We displayed only the itemsets of size 1, for simplicity:

    lhs                           rhs                     support    confidence   lift

1   {}                       => {RDNS_NONE}              0.40828350  0.4082835  1.0000000

2   {}                       => {MIME_HTML_ONLY}         0.30509685  0.3050968  1.0000000

3   {}                       => {HTML_MESSAGE}           0.51347853  0.5134785  1.0000000

4   {YEAR=2008}              => {RDNS_NONE}              0.06663394  0.7465000  1.8283864

5   {YEAR=2009}              => {RDNS_NONE}              0.07007052  0.7850000  1.9226836

6   {YEAR=2009}              => {HTML_MESSAGE}           0.05877890  0.6585000  1.2824295

7   {RATWARE_OUTLOOK_NONAME} => {RATWARE_MS_HASH}        0.05404802  0.9991749 12.9482436

8   {RATWARE_MS_HASH}        => {RATWARE_OUTLOOK_NONAME} 0.05404802  0.7004049 12.9482436

9   {MISSING_DATE}           => {MISSING_MID}            0.05538695  0.7231935  4.0540087

10  {MISSING_MID}            => {MISSING_DATE}           0.05538695  0.3104829  4.0540087

11  {HELO_DYNAMIC_IPADDR}    => {FH_HELO_EQ_D_D_D_D}     0.05400339  0.8916728 10.0648972

12  {FH_HELO_EQ_D_D_D_D}     => {HELO_DYNAMIC_IPADDR}    0.05400339  0.6095718 10.0648972

13  {YEAR=2007}              => {RDNS_NONE}              0.05543158  0.6210000  1.5210020

14  {YEAR=2007}              => {HTML_MESSAGE}           0.05346782  0.5990000  1.1665532

15  {FORGED_OUTLOOK_TAGS}    => {HTML_MESSAGE}           0.05163795  0.9974138  1.9424644

16  {SUBJ_ILLEGAL_CHARS}     => {SUBJECT_NEEDS_ENCODING} 0.05038829  0.9982317 17.8645195

http://untroubled.org/spam/).
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17  {SUBJECT_NEEDS_ENCODING} => {SUBJ_ILLEGAL_CHARS}     0.05038829  0.9017572 17.8645195

18  {RATWARE_MS_HASH}        => {MSGID_OUTLOOK_INVALID}  0.06667857  0.8640833  8.7604752

19  {MSGID_OUTLOOK_INVALID}  => {RATWARE_MS_HASH}        0.06667857  0.6760181  8.7604752

20  {YEAR=2002}              => {HTML_MESSAGE}           0.05636883  0.6315000  1.2298469

21  {DATE_SPAMWARE_Y2K}      => {INVALID_DATE}           0.05511916  1.0000000  5.8394579

22  {INVALID_DATE}           => {DATE_SPAMWARE_Y2K}      0.05511916  0.3218660  5.8394579

23  {RCVD_HELO_IP_MISMATCH}  => {RCVD_NUMERIC_HELO}      0.06190306  0.9992795  7.4982777

24  {RCVD_NUMERIC_HELO}      => {RCVD_HELO_IP_MISMATCH}  0.06190306  0.4645010  7.4982777

25  {MIME_QP_LONG_LINE}      => {HTML_MESSAGE}           0.07033830  0.8602620  1.6753612

26  {FH_HELO_EQ_D_D_D_D}     => {HTML_MESSAGE}           0.05819870  0.6569270  1.2793660

27  {FORGED_OUTLOOK_HTML}    => {MIME_HTML_ONLY}         0.06538427  1.0000000  3.2776477

28  {FORGED_OUTLOOK_HTML}    => {HTML_MESSAGE}           0.06538427  1.0000000  1.9475011

29  {MSGID_OUTLOOK_INVALID}  => {MISSING_MIMEOLE}        0.06261716  0.6348416  4.1301572

30  {MISSING_MIMEOLE}        => {MSGID_OUTLOOK_INVALID}  0.06261716  0.4073751  4.1301572

31  {MSGID_OUTLOOK_INVALID}  => {MIME_HTML_ONLY}         0.05752923  0.5832579  1.9117140

32  {MSGID_OUTLOOK_INVALID}  => {HTML_MESSAGE}           0.06364367  0.6452489  1.2566229

33  {YEAR=2003}              => {MIME_HTML_ONLY}         0.05766313  0.6460000  2.1173604

34  {YEAR=2003}              => {HTML_MESSAGE}           0.06895474  0.7725000  1.5044446

35  {YEAR=2004}              => {HTML_MESSAGE}           0.07042756  0.7890000  1.5365784

36  {FORGED_MUA_OUTLOOK}     => {HTML_MESSAGE}           0.05681514  0.5912680  1.1514951

37  {MIME_HTML_ONLY_MULTI}   => {MPART_ALT_DIFF}         0.06583058  0.9886059  9.9285987

38  {MPART_ALT_DIFF}         => {MIME_HTML_ONLY_MULTI}   0.06583058  0.6611385  9.9285987

39  {MIME_HTML_ONLY_MULTI}   => {MISSING_MIMEOLE}        0.05315540  0.7982574  5.1933086

40  {MISSING_MIMEOLE}        => {MIME_HTML_ONLY_MULTI}   0.05315540  0.3458188  5.1933086

41  {MIME_HTML_ONLY_MULTI}   => {MIME_HTML_ONLY}         0.06658931  1.0000000  3.2776477

42  {MIME_HTML_ONLY_MULTI}   => {HTML_MESSAGE}           0.06658931  1.0000000  1.9475011

43  {MISSING_MID}            => {RDNS_NONE}              0.07060609  0.3957968  0.9694167

44  {MISSING_MID}            => {MIME_HTML_ONLY}         0.07730072  0.4333250  1.4202867

45  {MISSING_MID}            => {HTML_MESSAGE}           0.09515308  0.5334001  1.0387972

46  {MPART_ALT_DIFF}         => {MISSING_MIMEOLE}        0.05337856  0.5360825  3.4876492

47  {MISSING_MIMEOLE}        => {MPART_ALT_DIFF}         0.05337856  0.3472706  3.4876492

48  {MPART_ALT_DIFF}         => {MIME_HTML_ONLY}         0.06591984  0.6620350  2.1699174

49  {MPART_ALT_DIFF}         => {HTML_MESSAGE}           0.09957154  1.0000000  1.9475011

50  {RCVD_NUMERIC_HELO}      => {MISSING_MIMEOLE}        0.05369098  0.4028801  2.6210603

51  {MISSING_MIMEOLE}        => {RCVD_NUMERIC_HELO}      0.05369098  0.3493031  2.6210603

52  {RCVD_NUMERIC_HELO}      => {RDNS_NONE}              0.07752388  0.5817147  1.4247812

53  {RCVD_NUMERIC_HELO}      => {MIME_HTML_ONLY}         0.05855574  0.4393838  1.4401453

54  {RCVD_NUMERIC_HELO}      => {HTML_MESSAGE}           0.07877354  0.5910918  1.1511518

55  {RDNS_DYNAMIC}           => {MIME_HTML_ONLY}         0.06257253  0.4054367  1.3288786

56  {RDNS_DYNAMIC}           => {HTML_MESSAGE}           0.09975007  0.6463274  1.2587232

57  {INVALID_DATE}           => {MIME_HTML_ONLY}         0.05467286  0.3192598  1.0464213

58  {INVALID_DATE}           => {HTML_MESSAGE}           0.06712488  0.3919729  0.7633676

59  {MISSING_MIMEOLE}        => {MIME_HTML_ONLY}         0.10381148  0.6753775  2.2136494

60  {MIME_HTML_ONLY}         => {MISSING_MIMEOLE}        0.10381148  0.3402575  2.2136494

61  {MISSING_MIMEOLE}        => {HTML_MESSAGE}           0.10648933  0.6927991  1.3492269

62  {MIME_HTML_ONLY}         => {RDNS_NONE}              0.11867357  0.3889702  0.9526963

63  {RDNS_NONE}              => {HTML_MESSAGE}           0.23216995  0.5686489  1.1074443
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64  {HTML_MESSAGE}           => {RDNS_NONE}              0.23216995  0.4521512  1.1074443

65  {MIME_HTML_ONLY}         => {HTML_MESSAGE}           0.30505222  0.9998537  1.9472162

66  {HTML_MESSAGE}           => {MIME_HTML_ONLY}         0.30505222  0.5940895  1.9472162

Analysis

It takes a critical eye to spot the interesting information. Rules such as YEAR=2009 => HTML_MESSAGE carry
information that is not surprising, deeming it uninteresting. However, some interesting patterns can be found:
MISSING_DATE => MISSING_MID

Spammers who don't set up a date usually 'forget' about the message ID as well. Maybe spam assassin could
score differently when they are found together.

HELO_DYNAMIC_IPADDR => FH_HELO_EQ_D_D_D_D
When HELO is done using a suspicious hostname, it is usually in the d-d-d-d format. This characterizes a
spam more than just one of the two rules separately.

SUBJECT_NEEDS_ENCODING => SUBJ_ILLEGAL_CHARS
Typically this means a spam is in Chinese. These rules obviously have a strong correlation (confidence= 90%).

Many more interesting patterns can be found and studied, in order to improve the quality of the filter. Using apriori
with "arules" is an easy and straightforward task.

References
• [1]http:/ / en. wikipedia. org/ wiki/ Apriori_algorithm
• [2]http:/ / rss. acs. unt. edu/ Rdoc/ library/ arules/ html/ apriori. html
• [3]http:/ / untroubled. org/ spam/

http://en.wikipedia.org/wiki/Apriori_algorithm
http://rss.acs.unt.edu/Rdoc/library/arules/html/apriori.html
http://untroubled.org/spam/
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The FP-Growth Algorithm
In Data Mining the task of finding frequent pattern in large databases is very important and has been studied in large
scale in the past few years. Unfortunately, this task is computationally expensive, especially when a large number of
patterns exist.
The FP-Growth Algorithm, proposed by Han in [1], is an efficient and scalable method for mining the complete set of
frequent patterns by pattern fragment growth, using an extended prefix-tree structure for storing compressed and
crucial information about frequent patterns named frequent-pattern tree (FP-tree). In his study, Han proved that his
method outperforms other popular methods for mining frequent patterns, e.g. the Apriori Algorithm [2] and the
TreeProjection [3]. In some later works [4] it was proved that FP-Growth has better performance than other methods,
including Eclat [5] and Relim [6]. The popularity and efficiency of FP-Growth Algorithm contributes with many
studies that propose variations to improve his performance [] [] [7] [8] [9] [10] [11] [12] [13] [14].
This chapter describes the algorithm and some variations and discuss features of the R language and strategies to
implement the algorithm to be used in the R. Next a briefly conclusion and future works are proposed.

The algorithm
The FP-Growth Algorithm is an alternative way to find frequent itemsets without using candidate generations, thus
improving performance. For so much it uses a divide-and-conquer strategy [15]. The core of this method is the usage
of a special data structure named frequent-pattern tree (FP-tree), which retains the itemset association information.
In simple words, this algorithm works as follows: first it compresses the input database creating an FP-tree instance
to represent frequent items. After this first step it divides the compressed database into a set of conditional databases,
each one associated with one frequent pattern. Finally, each such database is mined separately. Using this strategy,
the FP-Growth reduces the search costs looking for short patterns recursively and then concatenating them in the
long frequent patterns, offering good selectivity.
In large databases, it’s not possible to hold the FP-tree in the main memory. A strategy to cope with this problem is
to firstly partition the database into a set of smaller databases (called projected databases), and then construct an
FP-tree from each of these smaller databases.
The next subsections describe the FP-tree structure and FP-Growth Algorithm, finally an example is presented to
make it easier to understand these concepts.

FP-Tree structure
The frequent-pattern tree (FP-tree) is a compact structure that stores quantitative information about frequent patterns
in a database .
Han defines the FP-tree as the tree structure defined below :
1. One root labeled as “null” with a set of item-prefix subtrees as children, and a frequent-item-header table

(presented in the left side of Figure 1);
2.2. Each node in the item-prefix subtree consists of three fields:

1.1. Item-name: registers which item is represented by the node;
2.2. Count: the number of transactions represented by the portion of the path reaching the node;
3.3. Node-link: links to the next node in the FP-tree carrying the same item-name, or null if there is none.

1.1. Each entry in the frequent-item-header table consists of two fields:
1.1. Item-name: as the same to the node;
2.2. Head of node-link: a pointer to the first node in the FP-tree carrying the item-name.
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Additionally the frequent-item-header table can have the count support for an item. The Figure 1 below show an
example of a FP-tree.

Figure 1: An example of an FP-tree from [15].
The original algorithm to construct the FP-Tree defined by Han in is presented below in Algorithm 1.
Algorithm 1: FP-tree construction

Input: A transaction database DB and a minimum support threshold ?.
Output: FP-tree, the frequent-pattern tree of DB.
Method: The FP-tree is constructed as follows.

1.1. Scan the transaction database DB once. Collect F, the set of frequent items, and the support of each frequent
item. Sort F in support-descending order as FList, the list of frequent items.

2. Create the root of an FP-tree, T, and label it as “null”. For each transaction Trans in DB do the following:
•• Select the frequent items in Trans and sort them according to the order of FList. Let the sorted frequent-item

list in Trans be [ p | P], where p is the first element and P is the remaining list. Call insert tree([ p | P], T ).
• The function insert tree([ p | P], T ) is performed as follows. If T has a child N such that N.item-name =

p.item-name, then increment N ’s count by 1; else create a new node N , with its count initialized to 1, its
parent link linked to T , and its node-link linked to the nodes with the same item-name via the node-link
structure. If P is nonempty, call insert tree(P, N ) recursively.

By using this algorithm, the FP-tree is constructed in two scans of the database. The first scan collects and sort the
set of frequent items, and the second constructs the FP-Tree.

http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_01.jpg
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FP-Growth Algorithm
After constructing the FP-Tree it’s possible to mine it to find the complete set of frequent patterns. To accomplish
this job, Han in presents a group of lemmas and properties, and thereafter describes the FP-Growth Algorithm as
presented below in Algorithm 2.
Algorithm 2: FP-Growth

Input: A database DB, represented by FP-tree constructed according to Algorithm 1, and a minimum support
threshold ?.
Output: The complete set of frequent patterns.
Method: call FP-growth(FP-tree, null).
Procedure FP-growth(Tree, a) {

(01) if Tree contains a single prefix path then // Mining single prefix-path FP-tree {
(02) let P be the single prefix-path part of Tree;
(03) let Q be the multipath part with the top branching node replaced by a null root;
(04) for each combination (denoted as ß) of the nodes in the path P do
(05) generate pattern ß ∪ a with support = minimum support of nodes in ß;
(06) let freq pattern set(P) be the set of patterns so generated;

}
(07) else let Q be Tree;
(08) for each item ai in Q do { // Mining multipath FP-tree

(09) generate pattern ß = ai ∪ a with support = ai .support;
(10) construct ß’s conditional pattern-base and then ß’s conditional FP-tree Tree ß;
(11) if Tree ß ≠ Ø then

(12) call FP-growth(Tree ß , ß);
(13) let freq pattern set(Q) be the set of patterns so generated;

}
(14) return(freq pattern set(P) ∪ freq pattern set(Q) ∪ (freq pattern set(P) × freq pattern set(Q)))

}
When the FP-tree contains a single prefix-path, the complete set of frequent patterns can be generated in three parts:
the single prefix-path P, the multipath Q, and their combinations (lines 01 to 03 and 14). The resulting patterns for a
single prefix path are the enumerations of its subpaths that have the minimum support (lines 04 to 06). Thereafter,
the multipath Q is defined (line 03 or 07) and the resulting patterns from it are processed (lines 08 to 13). Finally, in
line 14 the combined results are returned as the frequent patterns found.
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An example
This section presents a simple example to illustrate how the previous algorithm works. The original example can be
viewed in [16].
Consider the transactions below and the minimum support as 3:

i(t)

1 ABDE

2 BCE

3 ABDE

4 ABCE

5 ABCDE

6 BCD

To build the FP-Tree, frequent items support are first calculated and sorted in decreasing order resulting in the
following list: { B(6), E(5), A(4), C(4), D(4) }. Thereafter, the FP-Tree is iteratively constructed for each transaction,
using the sorted list of items as shown in Figure 2.

(a)
Transaction
1: BEAD

(b) Transaction 2: BEC (c) Transaction 3: BEAD (d) Transaction 4: BEAC

(e) Transaction 5:
BEACD

(f) Transaction 6: BCD

http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_02A.jpg
http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_02B.jpg
http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_02C.jpg
http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_02D.jpg
http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_02E.jpg
http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_02F.jpg
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Figure 2: Constructing the FP-Tree iteratively.
As presented in Figure 3, the initial call to FP-Growth uses the FP-Tree obtained from the Algorithm 1, presented in
Figure 2 (f), to process the projected trees in recursive calls to get the frequent patterns in the transactions presented
before.
Using a depth-first strategy the projected trees are determined to items D, C, A, E and B, respectively. First the
projected tree for D is recursively processed, projecting trees for DA, DE and DB. In a similar manner the remaining
items are processed. At the end of process the frequent itemset is: { DAE, DAEB, DAB, DEB, CE, CEB, CB, AE,
AEB, AB, EB }.

Figure 3: Projected trees and frequent patterns founded by the recursively calls to FP-Growth Algorithm.

FP-Growth Algorithm Variations
As mentioned before, the popularity and efficiency of FP-Growth Algorithm contributes with many studies that
propose variations to improve its performance [17] . In this section some of them are briefly described.

DynFP-Growth Algorithm
The DynFP-Growth , has focused in improving the FP-Tree algorithm construction based on two observed problems:
1. The resulting FP-tree is not unique for the same “logical” database;
2.2. The process needs two complete scans of the database.
To solve the first problem Gyorödi C., et al. proposes the usage of a support descending order together with a
lexicographic order, ensuring in this way the uniqueness of the resulting FP-tree for different “logically equivalent”
databases. To solve the second problem they proposed devising a dynamic FP-tree reordering algorithm, and
employing this algorithm whenever a “promotion” to a higher order of at least one item is detected.
An important feature in this approach is that it’s not necessary to rebuild the FP-Tree when the actual database is
updated. It’s only needed to execute the algorithm again taking into consideration the new transactions and the stored
FP-Tree.
Another adaptation proposed, because of the dynamic reordering process, is a modification in the original structures,
by replacing the single linked list with a doubly linked list for linking the tree nodes to the header and adding a

http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_03.jpg


The FP-Growth Algorithm 48

master-table to the same header. See for more details.

FP-Bonsai Algorithm
The FP-Bonsai improve the FP-Growth performance by reducing (pruning) the FP-Tree using the ExAnte
data-reduction technique . The pruned FP-Tree was called FP-Bonsai. See for more details.

AFOPT Algorithm
Investigating the FP-Growth algorithm performance Liu proposed the AFOPT algorithm in . This algorithm aims at
improving the FP-Growth performance in four perspectives:

•• Item Search Order: when the search space is divided, all items are sorted in some order. The number of the
conditional databases constructed can differ very much using different items search orders;

•• Conditional Database Representation: the traversal and construction cost of a conditional database heavily
depends on its representation;

•• Conditional Database Construction Strategy: constructing every conditional database physically can be
expensive affecting the mining cost of each individual conditional database;

•• Tree Traversal Strategy: the traversal cost of a tree is minimal using top-down traversal strategy.
See for more details.

NONORDFP Algorithm
The Nonordfp algorithm was motivated by the running time and the space required for the FP-Growth algorithm.
The theoretical difference is the main data structure (FP-Tree), which is more compact and which is not needed to
rebuild it for each conditional step. A compact, memory efficient representation of an FP-tree by using Trie data
structure, with memory layout that allows faster traversal, faster allocation, and optionally projection was introduced.
See for more details.

FP-Growth* Algorithm
This algorithm was proposed by Grahne et al , and is based in his conclusion about the usage of CPU time to
compute frequent item sets using FP-Growth. They observed that 80% of CPU time was used for traversing
FP-Trees . Therefore, they used an array-based data structure combined with the FP-Tree data structure to reduce the
traversal time, and incorporates several optimization techniques. See for more details.

PPV, PrePost, and FIN Algorithm
These three algorithms were propsed by Deng et al , and are based on three novel data structures called Node-list ,
N-list , and Nodeset respectively for facilitating the mining process of frequent itemsets. They are based on a FP-tree
with each node encoding with pre-order traversal and post-order traversal. Compared with Node-lists, N-lists and
Nodesets are more efficient. This causes the efficiency of PrePost and FIN is higher than that of PPV . See for more
details.
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Data Visualization in R
Normally the data used to mine frequent item sets are stored in text files. The first step to visualize data is load it into
a data-frame (an object to represent the data in R).
The function read.table could be used in the following way:

var <- read.table(fileName, fileEncoding=value, header = value, sep = value)

Where:

  • var: the R variable to receive the loaded data.
  • fileName: is a string value with the name of the file to be loaded.
  • fileEncoding: to be used when the file has no-ASCII characters.
  • header: indicates that the file has headers (T or TRUE) or not (F 
or FALSE).

  • sep: defines the field separator character (“,”, “;” or “\t” for 
example)

  • Only the filename is a mandatory parameter.

Another function in R to load data is called scan. See the R Data Import/Export Manual [18] for details.
The visualization of the data can be done in two ways:

•• Using the variable name (var), to list the data in a tabular presentation.
•• And summary(var), to list a summary of the data.

Example:

> data <- read.table("boolean.data", sep=",", header=T)

> data

      A    B     C     D     E

1  TRUE TRUE FALSE  TRUE  TRUE

2 FALSE TRUE  TRUE FALSE  TRUE

3  TRUE TRUE FALSE  TRUE  TRUE

4  TRUE TRUE  TRUE FALSE  TRUE

5  TRUE TRUE  TRUE  TRUE  TRUE

6 FALSE TRUE  TRUE  TRUE FALSE

> summary(data)

     A              B               C               D               E

 Mode :logical   Mode:logical   Mode :logical   Mode :logical   Mode 

:logical

 FALSE:2         TRUE:6         FALSE:2         FALSE:2         FALSE:1

 TRUE :4         NA's:0         TRUE :4         TRUE :4         TRUE :5

 NA's :0                        NA's :0         NA's :0         NA's :0

In the example above the data in “boolean.data”, that have a simple binary database, was loaded in the data-frame
variable data. Typing the name of the variable in the command line, its content is printed, and typing the summary
command the frequency occurrence of each item is printed. The summary function works differently. It depends on
the type of data in the variable, see [19] [20] [21] for more details.
The functions presented previously can be useful, but to frequent item set datasets use an specific package called
arules [22] [23] which is better to visualize the data.

http://cran.r-project.org/doc/manuals/R-data.html
https://r-forge.r-project.org/projects/arules/
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Using arules, several functions are made available:
•• read.transactions: used to load the database file into a variable.
•• inspect: used to list the transactions.
•• length: returns the number of transactions.
•• image: plots an image with all transactions in a matrix format.
•• itemFrequencyPlot: calculates the frequency of each item and plots it in a bar graphic.

Example:

> data <- read.transactions("basket.data", format="basket", sep = ",")

> data

transactions in sparse format with

 6 transactions (rows) and

 5 items (columns)

> inspect(data)

  items

1 {A,

   B,

   D,

   E}

2 {B,

   C,

   E}

3 {A,

   B,

   D,

   E}

4 {A,

   B,

   C,

   E}

5 {A,

   B,

   C,

   D,

   E}

6 {B,

   C,

   D}

> length(data)

[1] 6

> image(data)

> itemFrequencyPlot(data, support=0.1)
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In this example we can see the difference in the usage of the variable name in the command line. From transactions,
only the number of rows (transactions) and cols (items) are printed. The result of image(data) and
itemFrequencyPlot(data, support = 0.1) are presented in the figures 4 and 5 below.

Figure 4: Result of the image(data) call.

Figure 5: Result of the itemFrequencyPlot(data, support = 0.1) call.

http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_04.jpg
http://en.wikibooks.org/w/index.php?title=File%3AFPG_FIG_05.jpg


The FP-Growth Algorithm 52

Implementation in R
The R [24] provides several facilities for data manipulation, calculation and graphical display very useful for data
analysis and mining. It can be used as both a statistical library and a programming language.
As a statistical library, it provides a set of functions to summary data, matrix facilities, probability distributions,
statistical models and graphical procedures.
As a programming language, it provides a set of functions, commands and methods to instantiate and manage values
of different type of objects (including lists, vectors and matrices), user interaction (input and output from console),
control statements (conditional and loop statements), creation of functions, calls to external resources and create
packages.
This chapter isn’t accomplished to present details about R resources and will focus on the challenges to implement an
algorithm using R or to be used in R. However, to better understanding the R power, some basic examples based in
are presented in Appendix A.
To implement an algorithm using R, normally it would be necessary to create complex objects to represent the data
structures to be processed. Also, it would be necessary to implement complex functions to process this data
structures. Thinking in the specific case of implementing the FP-Growth algorithm could be very hard to represent
and process an FPTree using only the R resources. Moreover, for performance reasons it could be interesting to
implement the algorithm using other languages and integrate it with R. Other reasons for using other languages are to
get better memory management and to use existing packages[25].
Two ways to integrate R with other languages are available and will be briefly presented below: creating a package
and making an external call using interface functions . Next it is presented the FP-Growth implementation used in
this work and the efforts to integrate it with R. For both would be necessary to install the RTools [26].

Creating a Package
Package is a mechanism for loading optional code implemented in other languages in R . The R distribution itself
includes about 25 packages, and some extra packages used in this WikiBook can be listed:

• aRules [1]

• arulesNBMiner [27]

• arulesSequences [28]

• cluster [29]

To create a package it’s necessary to follow some specifications. The sources of an R package consist in a directory
structure described below:

• Root: the root directory containing a DESCRIPTION file and some optional files (INDEX, NAMESPACE,
configure, cleanup, LICENCE, COPYING and NEWS).

• R: contains only R code files that could be executed by the R command source(filename) to create R objects
used by users. Alternatively, this directory can have a file sysdata.rda. This file has a saved image of R objects
created in an execution of R console.

• data: aimed to have data files, either to be made available via lazy-loading or for loading using function data().
These data files could be from three different types: plain R code (.r or .R), tables (.tab, .txt, or .csv) or saved
data from R console (.RData or .rda). Some additional compressed file can be used to table’s files.

• demo: contains scripts in pain R code (for running using function demo()) that demonstrate some of the
functionality of the package

• exec: could contain additional executables the package needs, typically scripts for interpreters such as the shell,
Perl, or Tcl.

• inst: its content will be copied to the installation directory after it is built and its makefile can create files to be
installed. May contain all information files that intended to be viewed by end users.

http://www.murdoch-sutherland.com/Rtools/
http://r-forge.r-project.org/projects/arules/
http://cran.fiocruz.br/web/packages/arulesNBMiner/index.html
http://cran.r-project.org/web/packages/arulesSequences/index.html
http://cran.r-project.org/web/packages/cluster/index.html
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• man: should contain only documentation files for the objects in the package (using an specific R
documentation format). An empty man directory causes an installation error.

• po: used for files related to internalization, in other words, to translate errors and warning messages.
• src: contains the sources, headers, makevars and makefiles. The supported languages are: C, C++, FORTRAN

77, Fortran 9x, Objective C and Objective C++. It’s not possible to mix all these languages in a single package,
but mix C and FORTRAN 77 or C and C++ seems to be successful. However, there ways to make usage from
other packages.

• tests: used for additional package-specific test code.
Once a source package is created, it must be installed by the command line in the OS console:

R CMD INSTALL <parameters>

Alternatively, packages can be downloaded and installed from within R, using the command line in the R console:

> install.packages(<parameters>)

See the Installation and Administration manual [30] [], for details.
After installed, the package needs to be loaded to be used, using the command line in the R console:

> library(packageName)

Making external call using interface functions
Making external call using interface functions is a simple way to use external implementation without complies with
all rules described before to create a package to R.
First the code needs to include R.h header file that comes with R installation.
To compile a source code is needs to use the compiler R at the OS command line:

> R CMD SHLIB <parameters>

Compiled code to be used in R needs to be loaded as a shared object in Unix-like OS, or as a DLL in Windows OS.
To load or unload it can be used the commands in the R console:

> dyn.load(fileName)

> dyn.unload(fileName)

After the load, the external code can be called using some of these functions:
•• .C
•• .Call
•• .Fortran
•• .External

Two simple examples are presented below, using .C function:
Example 1: Hello World

## C code in file example1.c

#include <R.h>

Void do_stuff ()

{

   printf("\nHello, I'm in a C code!\n");

}

http://cran.r-project.org/doc/manuals/R-admin.html
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## R code in file example.R

dyn.load("example1.dll")

doStuff <-

function (){

    tmp <- .C("do_stuff")

      rm(tmp)

      return(0)

}

doStuff()

## Compiling code in OS command line

C:\R\examples>R CMD SHLIB example1.c

gcc -I"C:/PROGRA~1/R/R-212~1.0/include" -O3 -Wall -std=gnu99 -c 

example1.c -o example1.o

gcc -shared -s -static-libgcc -o example1.dll tmp.def example1.o 

-LC:/PROGRA~1/R/R-212~1.0/bin/i386 -lR

## Output in R console

> source("example1.R")

Hello, I'm in a C code!

>

Example 2: Calling C with an integer vector

##C code in file example2.c

#include <R.h>

void doStuff(int *i) {

    i[0] = 11;

}

## Output in R console

> dyn.load("example2.dll")

> a <- 1:10

> a



The FP-Growth Algorithm 55

 [1]  1  2  3  4  5  6  7  8  9 10

> out <- .C("doStuff", b = as.integer(a))

> a

 [1]  1  2  3  4  5  6  7  8  9 10

> out$b

 [1] 11  2  3  4  5  6  7  8  9 10

The FP-Growth Implementation
The FP-Growth implementation used in this work was maded by Christian Borgelt [31] [32] a principal researcher at
European Centre for Soft Computing. He also implemented the code used in arules package [22] for Eclat and Apriori
algorithms. The source code can be downloaded in his personal site.
As described by Borgelt implemented two variants of the core operation of computing a projection of an FP-tree. In
addition, projected FP-trees are optionally pruned by removing items that has becoming in-frequent (using
FP-Bonsai approach).
The source code is divided into three main folders (packages):

• fpgrowth: contais the main file that implements the algorithm and manages the FP-Tree;
• tract: manages item sets, transactions and its reports;
• util: facilities to be used in fpgrowth and tract.

The syntax to call this implementation, from the OS command line, is:

> fpgrowth [options] infile [outfile [selfile]]

-t#      target type                              (default: s)

         (s: frequent, c: closed, m: maximal item sets)

-m#      minimum number of items per item set     (default: 1)

-n#      maximum number of items per item set     (default: no limit)

-s#      minimum support of an item set           (default: 10%)

         (positive: percentage, negative: absolute number)

-e#      additional evaluation measure            (default: none)

-d#      minimum value of add. evaluation measure (default: 10%)

-g       write output in scanable form (quote certain characters)

-H#      record header  for output                (default: "")

-k#      item separator for output                (default: " ")

-v#      output format for item set information   (default: "  (%1S)")

-q#      sort items w.r.t. their frequency        (default: 2)

         (1: ascending, -1: descending, 0: do not sort,

          2: ascending, -2: descending w.r.t. transaction size sum)

-j       use quicksort to sort the transactions   (default: heapsort)

-a#      variant of the fpgrowth algorithm to use (default: simple)

-x       do not prune with perfect extensions

-z       do not use head union tail (hut) pruning

         (only for maximal item sets, option -tm)

-b#      blank   characters                       (default: " \t\r")

-f#      field   separators                       (default: " \t,")

-r#      record  separators                       (default: "\n")

-C#      comment characters                       (default: "#")

-!       print additional option information

infile   file to read transactions from           [required]

http://www.borgelt.net//fpgrowth.html
https://r-forge.r-project.org/projects/arules/
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outfile  file to write frequent item sets to      [optional]

selfile  file stating a selection of items        [optional]

There are options to choose the limits of items per set, the minimum support, evaluation measure, to configure the
input and output format, and so on.
A simple calling to FP-Growth, and its results, using the test1.tab example file (that comes with source code) as
input file, the test1.out, and minimum support as 30%, could be made as follow:

C:\R\exec\fpgrowth\src>fpgrowth -s30 test1.tab test1.out

fpgrowth - find frequent item sets with the fpgrowth algorithm

version 4.10 (2010.10.27)        (c) 2004-2010   Christian Borgelt

reading test1.tab ... [5 item(s), 10 transaction(s)] done [0.00s].

filtering, sorting and recoding items ... [5 item(s)] done [0.00s].

reducing transactions ... [8/10 transaction(s)] done [0.00s].

writing test1.out ... [15 set(s)] done [0.00s].

The presented result shows some information about Copyright and some execution data, as the number of items and
transactions and the number of frequent set (21 in this example). The content of input and output files is presented
below.
The input file content:

a b c

a d e

b c d

a b c d

b c

a b d

d e

a b c d

c d e

a b c

The output file content:

e d  (30.0)

e  (30.0)

a c b  (40.0)

a c  (40.0)

a d b  (30.0)

a d  (40.0)

a b  (50.0)

a  (60.0)

d b c  (30.0)

d b  (40.0)

d c  (40.0)

d  (70.0)

c b  (60.0)

c  (70.0)

b  (70.0)
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Calling FP-Growth from R
As observed before, to create a package are imposed a several rules creating a standard directory structure and
content to make it available an external source code. An alternative presented before is to creating a shared object, or
a DLL, to be called using specific R functions (.C, .CALL, and so on).
To start a job of adapt an existing code to compose a package can be a hard job and spending too much time. An
interesting approach is to iteratively create and adapt a shared object, or DLL, and make tests to validate it and after
improve the adaptations in some iterations, when a satisfactory result has been done, start to work in a package
version.
The intent iterations to make it available the C implementation in R are:

1. Create a simple command line call, without parameters making only two changes in the original source (the
fpgrowth.c file):
•• Rename the main function to FP-Growth with the same signature;
•• Create a function to be called from R, creating the parameters from a configuration file (containing only a

string with the same syntax of the command line, broken it in an array to be used as the argument array to
FP-Growth function;

2. Compile the code project within the R compile command, including the R.h reader file and call it using R;
3. Implement the input parameters from the R call, eliminating the usage of a configuration file, including the
change to define a input file name to data-frames in R;
4. Preparing the output in a R data-frame to be returned to R;
5. Create the R package.

The first iteration could be done easily, without any surprise.
Unfortunately, the second iteration, that sounds to be ease to be done either, in a practice proved to be very hard. The
R compile command does not work with makefiles and the compile original code with it could not be done. After
some experiments, the strategy was changed to build a library with the adapted code, without the function created to
be called from R, and then create a new code containing this function and making use of the compiled library. Next,
calling the new code, compiled as a DLL, from R raises execution errors. Debugging the execution, wasting several
time, was detected that some compile configurations to create the library was wrong. To solving this problem, some
tests are made creating an executable version to be run using OS command line until all execution errors are solved.
However, solved this errors, another unexpected behavior was founded. Calling the version compiled using R
command from R console the incompatible cygwin version error was rised in loading DLL function. Several
experiments, changing the compilation parameters, different versions of cygwin, and so on were tried, but have no
success (these tests are made only under Windows OS). So, having no success in the second iteration, the next step
was compromised.
The main expected challenge in third and fourth iterations is to interface the R data types and structure with its
correspondents in the C language, either to dataset input and other input parameters to be converted and used
internally than to output dataset needed to be created to be returned to R. An alternative is to adapt all the code to use
the data received. However, it sounds to be more complex to be done.
The fifth iteration sounds to be a bureaucratic work. Once the code has been entirely adapted and validated, create
the additional directory and required content should be an easy task.
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Conclusion and Future Works
In this chapter an efficient and scalable algorithm to mine frequent patterns in databases was presented: the
FP-Growth. This algorithm uses a useful data structure, the FP-Tree, to store information about frequent patterns.
Also an implementation of the algorithm was presented. Additionally, some features of R language and experiments
to adapt the algorithm source code to be used in R. We could observe that the job to make this adaptation is hard, and
cannot be done in short time. Unfortunately, have no time yet to conclude this adaptation.
As a future work would be interesting to better understand the implementation of external resources on R and
complete the job proposed in this work, and after comparing results with other algorithms to mining frequent
itemsets available in R.

Appendix A: Examples of R statements
Some basic examples based in .
Getting help about functions

> help(summary)

> ?summary

Creating an object

> perceptual <- 1.2

Numeric expressions

> z <- 5

> w <- z^2

> y <- (34 + 90) / 12.5

Printing an object value

> w

[1] 25

Creating a vector

> v <- c(4, 7, 23.5, 76.2, 80)

Vector operations

> x <- sqrt(v)

> v1<- c(4, 6, 87)

> v2 <- c(34, 32.4, 12)

> v1 + v2

[1] 38.0 38.4 99.0

Categhoric data

> s <- c("f", "m", "m", "f")

> s

[1] "f" "m" "m" "f"

> s <- factor(s)

> s

[1] f m m f
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Levels: f m

> table(s)

s

f m

2 2

Sequences

> x <- 1:1000

> y <- 5:0

> z <- seq(-4, 1, 0.5) # create a sequence starting in -4, stopping in 1 

                       # with an increment of 0.5

> w <- rnorm(10) # create a random sequence of 10 numeric values

> w <- rnorm(10, mean = 10, sd = 3) # create a normal distribution of 

                                    # 10 numeric values with mean of 10

                                    # and standard deviation of 3

Matrices

> m1 <- matrix(c(45,  23,  66,  77,  33,  44),  2,  3)

> m1

        [,1]   [,2]   [,3]

[1,]     45     66     33

[2,]     23     77     44

> m2 <- matrix(c(12,  65,  32,  7,  4,  78),  2,  3)

> m2

        [,1]   [,2]   [,3]

[1,]     12     32      4

[2,]     65      7     78

> m1 + m2

        [,1]   [,2]   [,3]

[1,]     57     98     37

[2,]     88     84    122

Lists

> student <- list(nro = 34453, name = "Marie", scores = c(9.8, 5.7, 8.3))

> student[[1]]

[1] 34353

> student$nro

[1] 34353

Data Frames (represents database tables)

> scores.inform <- data.frame(nro = c(2355, 3456, 2334, 5456),

+ team = c("tp1", "tp1", "tp2", "tp3"), 

+ score = c(10.3, 9.3, 14.2, 15))

> scores.inform

    nro    team   score

1  2355     tp1    10.3

2  3456     tp1     9.3
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3  2334     tp2    14.2

4  5456     tp3    15.0

> scores.inform[score > 14,]

    nro    team   score

3  2334     tp2    14.2

4  5456     tp3    15.0

> team

[1]  tp1  tp1  tp2  tp3

Levels:  tp1  tp2  tp3

Conditional statement

> if (x > 0) y <- z / x else y <- z

> if (x > 0) {

+    cat('x is positive.\n')

+    y <- z / x

+} else {

+    cat('x isn’t positive!\n')
+    y <- z

+}

Case statement

> sem <- "green"

> switch(sem, green = "continue", yellow = "attention", red = "stop")

[1] "continue"

Loop statements

> x <- rnorm(1)

> while (x < -0.3) {

+    cat("x=", x, "\t")

+    x <- rnorm(1)

+  }

> text  <-  c()

> repeat  {

+   cat('Type a phrase?  (empty to quit) ')

+   fr  <-  readLines(n=1)

+   if  (fr  ==  '')  break  else  texto  <-  c(texto,fr)

+}

> x <- rnorm(10)

> k <- 0

> for(v in x)  {

+   if(v > 0)

+     y <- v

+   else y <- 0

+     k <- k + y

+  }
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Creating and calling functions

> cel2far <- function(cel) {

+   res  <-  9/5  *  cel  +  32

+   res

+ }

> cel2far(27.4)

[1]  81.32

> cel2far(c(0,  -34.2,  35.6,  43.2))

[1]  32.00  -29.56    96.08  109.76
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SPADE
Frequent Sequence Mining is used to discover a set of patterns shared among objects which have between them a
specific order. For instance, a retail shop may possess a transaction database which specifies which products were
acquired by each customer over time. In this case, the store may use Frequent Sequence Mining to find that 40% of
the people who bought the first volume of Lord of the Rings came back to buy the second volume a month later. This
kind of information may be used to support directed advertising campaigns or recommendation systems.
Another application domain where Frequent Sequence Mining may be used is Web click log analysis in Information
Retrieval systems, in which case the system performance may be refined by analyzing the sequence of interactions
that the user exposed while searching or browsing for a specific information. This kind of usage becomes especially
clear when we consider the huge amount of data obtained by industrial search engines in the form of query logs.
Google alone was reported to answer 5.42 billion queries during December 2008 (Telecom Paper, 2009)
In biology Frequent Sequence Mining may be used to extract information hidden in DNA sequences. Sequence
databases in biology are often huge and complex due to variations from genetic mutations and evolution (Li et al.,
2007). For example, Frequent Sequence Mining can be used to extract patterns which may be determinant to the
development of genetic conditions.
A sequence α is an ordered list of events <a1,a2,...,am>. An event is a non-empty unordered set of items ai ⊆
i1,i2,...,ik. A sequence α = <a1,a2,...,am> is a subsequence of β = < b1, b2,...,bn > if and only if exists i1,i2,...,im
such that 1 ≤ i1 < i2 < ... < im ≤ n and a1 ⊆ bi1, a2 ⊆ bi2 and am ⊆ bim. Given a sequence database D = s1,s2,...,sn,
the support of a sequence α is the number of sequences of D which contains α as a subsequence. If the support of α
is bigger than a threshold maxsup, then α is a frequent sequence (Peng and Liao, 2009).

Algorithm
An algorithm to Frequent Sequence Mining is the SPADE (Sequential PAttern Discovery using Equivalence classes)
algorithm. It uses a vertical id-list database format, where we associate to each sequence a list of objects in which it
occurs. Then, frequent sequences can be found efficiently using intersections on id-lists. The method also reduces the
number of databases scans, and therefore also reduces the execution time.
The first step of SPADE is to compute the frequencies of 1-sequences, which are sequences with only one item. This
is done in a single database scan. The second step consists of counting 2-sequences. This is done by transforming the
vertical representation into an horizontal representation in memory, and counting the number of sequences for each
pair of items using a bidimensional matrix. Therefore, this step can also be executed in only one scan.
Subsequent n-sequences can than be formed by joining (n-1)-sequences using their id-lists. The size of the id-lists is
the number of sequences in which an item appears. If this number is greater than minsup, the sequence is a frequent
one. The algorithm stops when no frequent sequences can be found anymore. The algorithm can use a breadth-first
or a depth-first search method for finding new sequences (Zaki, 2001)

http://cran.r-project.org/web/packages/cluster/index.html
http://cran.r-project.org/doc/manuals/R-admin.html
http://www.borgelt.net//fpgrowth.html
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Implementation
The first step is to install the arulesSequences package (Buchta and Hahsler, 2010).

> install.packages("arules")

> install.packages("arulesSequences")

To illustrate the use of CSPADE, we are going to use an example file that can be found inside the package
arulesSequence. This file is listed bellow:

$ cat /usr/local/lib/R/site-library/arulesSequences/misc/zaki.txt

1 10 2 C D

1 15 3 A B C

1 20 3 A B F

1 25 4 A C D F

2 15 3 A B F

2 20 1 E

3 10 3 A B F

4 10 3 D G H

4 20 2 B F

4 25 3 A G H

Each line in the zaki.txt file is an event. The first column is the sequence id, that is, the sequence to which this event
belongs. The second column is the event timestamp, which is the moment in time when the event has occurred. The
third column is the number n of items in the event, and it is followed by n additional columns, one for each item.
First, we need to load the necessary packages:

> library(Matrix)

> library(arules)

> library(arulesSequences)

To read the zaki.txt file, issue the following commands:
> x <- read_baskets(con = system.file("misc", "zaki.txt", package = "arulesSequences"), info = c("sequenceID","eventID","SIZE"))

> as(x, "data.frame")

       items sequenceID eventID SIZE

1      {C,D}          1      10    2

2    {A,B,C}          1      15    3

3    {A,B,F}          1      20    3

4  {A,C,D,F}          1      25    4

5    {A,B,F}          2      15    3

6        {E}          2      20    1

7    {A,B,F}          3      10    3

8    {D,G,H}          4      10    3

9      {B,F}          4      20    2

10   {A,G,H}          4      25    3

Next, we execute the CSPADE algorithm:

> s1 <- cspade(x, parameter = list(support = 0.4), control = list(verbose = TRUE))
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Note that we executed the cpade algorithm with the data contained in zaki object. We have set the support parameter
to 0.4, and also have instructed the algorithm to show a verbose output.
The algorithm output will be the following:

preprocessing ... 1 partition(s), 0 MB [0.046s]

mining transactions ... 0 MB [0.022s]

reading sequences ... [0.07s]

total elapsed time: 0.138s

Visualization
We can use the command summary and as to see the results:

cspade> summary(s1)

set of 18 sequences with

most frequent items:

      A       B       F       D (Other) 

     11      10      10       8      28 

most frequent elements:

    {A}     {D}     {B}     {F}   {B,F} (Other) 

      8       8       4       4       4       3

element (sequence) size distribution:

sizes

1 2 3

8 7 3

sequence length distribution:

lengths

1 2 3 4

4 8 5 1

summary of quality measures:

    support

 Min.   :0.5000

 1st Qu.:0.5000

 Median :0.5000

 Mean   :0.6528

 3rd Qu.:0.7500

 Max.   :1.0000

mining info:

 data ntransactions nsequences support

    x            10          4     0.4

cspade> as(s1, "data.frame")
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          sequence support

1            <{A}>    1.00

2            <{B}>    1.00

3            <{D}>    0.50

4            <{F}>    1.00

5          <{A,F}>    0.75

6          <{B,F}>    1.00

7        <{D},{F}>    0.50

8      <{D},{B,F}>    0.50

9        <{A,B,F}>    0.75

10         <{A,B}>    0.75

11       <{D},{B}>    0.50

12       <{B},{A}>    0.50

13       <{D},{A}>    0.50

14       <{F},{A}>    0.50

15   <{D},{F},{A}>    0.50

16     <{B,F},{A}>    0.50

17 <{D},{B,F},{A}>    0.50

18   <{D},{B},{A}>    0.50

This output shows (1) the list of the most frequent isolated items (A,B, ..), (2) the list of the most frequent set of
items that occur in events (referred to as elements), (3) the distribution of the sizes of the set of items, (4) the
distribution of the number of events in a sequence (referred to as sequence length), (5) the minimum, maximum,
mean and median support values, and (6) the set of frequent sequences mined ordered by its support value.

Case Study

Scenario
In this case study we analyse the application of the CSPADE algorithm to a Tag Recommendation problem. Tags are
keywords assigned by users to items in the context of the Web 2.0. A Tag Recommendation System is used to
suggest new tags to users with the objective of enhancing their browsing experience and enrich item description. The
dataset used in this case study was obtained from Delicious using its public time-line, which shows bookmarks from
all the system users during a given period of time. The SPADE algorithms were executed and some results are
presented in the discussion bellow.

Datasets
The dataset used in this case study was collected from Delicious in October 2009. We collected periodically the
Delicious [1] public time-line which shows the bookmarks from all the system users. Each bookmark consists of a
user, the URL which was bookmarked, and a set of tags that user chose to describe the URL.
We show some bookmark examples:
gmenezes http://www.traderslog.com/forum/ 5 education investment forex CFD trading

gmenezes http://bikebins.com/index.html 6 pannier bike bicycle cycling bikes commuting

osvaldo http://www.noycefdn.org/ecrwresources.php 6 literacy math foundation education webdesign professionaldevelopment

In this example, the user gmenezes has bookmarked the URL http:/ / www. traderslog. com/ forum/ '' and used 5 tags
to describe its content: education investment forex CFD trading.

http://www.delicious.com
http://www.traderslog.com/forum/''
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The public time-line shows the system bookmarks in a time sequence, so that we can obtain sequences of bookmarks
for specific users. We can use these sequences as input for the CSPADE algorithm. In this case, each bookmark is an
event, and each tag is an item. In other words, we will mine temporal patterns with the objective of generating rules
that predict useful tags for a specific user by using the wisdom of crowds.
Before appling the algorithm to the data we had to perform some pre-processing in our raw data. First, we extracted
a sample, which consisted of 31,289 sequential bookmarks. Next, we performed data cleansing and duplicate
removal. We ended up with 7,559 sequential bookmarks. We grouped each user`s bookmarks as sequences and each
individual bookmark as an event. For instance, the example above yields:

1 1 5 education investment forex CFD trading

1 2 6 pannier bike bicycle cycling bikes commuting

2 1 6 literacy math foundation education webdesign professionaldevelopment

The dataset used can be downloaded from here [2].

Execution
We used the dataset described above in the experiments. To execute the algorithm we first execute read_baskets() to
load the dataset file from disk as temporal transaction data. Note that we need to load the required libraries (as
above).
n <- read_baskets(con = system.file("misc", "delicious.sequence", package = "arulesSequences"), info = c("sequenceID","eventID","SIZE"))

We can see data statistics with the command summary():

> summary(n)

transactions as itemMatrix in sparse format with

 7559 rows (elements/itemsets/transactions) and

 7496 columns (items) and a density of 0.0004482878 

most frequent items:

     design       tools        blog   webdesign inspiration     (Other) 

        469         301         233         229         220       23949 

element (itemset/transaction) length distribution:

sizes

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 

2283 1432 1172  825  560  343  230  273  171  100   60   34   25   14    5    5 

  17   18   19   20 

   5    7    8    7 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

   1.00    1.00    3.00    3.36    4.00   20.00 

includes extended item information - examples:

  labels

1      |

2      -

3      ,

http://homepages.dcc.ufmg.br/~gmenezes/delicious-sequence/delicious-sequence.txt
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includes extended transaction information - examples:

  sequenceID eventID SIZE

1          1       1    2

2          2       1    5

3          3       1    3

Next, we execute cspade() to generate the rules. We have set a support of 0.002 to obtain a larger number of patterns.

s1 <- cspade(n, parameter = list(support = 0.002), control = list(verbose = TRUE))

Caveats

The use of higher support levels in this dataset does not generate any rule and can cause non-intuitive errors. For
example, if the support is set to 0.1, the system outputs:

> s1 <- cspade(n, parameter = list(support = 0.1), control = list(verbose = TRUE))

parameter specification:

support : 0.1

maxsize :  10

maxlen  :  10

algorithmic control:

bfstype : FALSE

verbose :  TRUE

summary : FALSE

preprocessing ... 1 partition(s), 0.18 MB [0.05s]

mining transactions ... can't open data file: No such file or directory

Error in cspade(n, parameter = list(support = 0.1), control = list(verbose = TRUE)) : 

  system invocation failed

Output
We can see the generated rules by issuing the command as().

as(s1, "data.frame")

(...)

845                        <{webdesign},{design}> 0.004675877

846            <{inspiration,webdesign},{design}> 0.001912859

847                 <{design,webdesign},{design}> 0.004250797

848                <{design,typography},{design}> 0.002337938

849                     <{design,tools},{design}> 0.002337938

850        <{inspiration},{inspiration},{design}> 0.001912859

851             <{inspiration},{design},{design}> 0.002125399

852               <{design,inspiration},{design}> 0.004675877

853             <{design},{inspiration},{design}> 0.001912859

854                  <{inspiration,art},{design}> 0.001912859

855 <{design,inspiration},{inspiration},{design}> 0.001912859

856      <{design},{design,inspiration},{design}> 0.001912859

857                  <{design},{design},{design}> 0.004250797

858                      <{design,blog},{design}> 0.002337938
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859                       <{design,art},{design}> 0.002550478

860         <{design},{design},{design},{design}> 0.002337938

861                      <{design},{design,blog}> 0.001912859

862                           <{design,art,blog}> 0.001912859

863                       <{design},{design,art}> 0.002763018

864                          <{art},{design,art}> 0.002125399

865                               <{culture,art}> 0.001912859

866                                 <{css},{css}> 0.001912859

867                              <{design},{css}> 0.002125399

868                                <{blog,blogs}> 0.003400638

869                             <{blog,blogging}> 0.001912859

(...)

To see the complete set of rules, download it from here [3].

Analysis
We have observed that CSPADE found many trivial sequences from user behaviour. For example, it has found many
unitary sequences, such as <{design}>, <{ajax}>, <{css}>, among others. These unitary sequences are really
frequently used, but they may not be useful in the particular application, which is Tag Recommendation.
Furthermore, other trivial sequences were found, such as <{design}.{design}> and <{webdesign},{design}>. These
sequences indicates that the same users tend to bookmarks pages in the same subject subsequently. However, some
interesting patters were also found. We can cite <{library},{books}>, <{javascript},{ajax}> and
<{video},{youtube}>.
We can also observe that many frequent patterns are related to design, art and web_development. These tags are also
the most popular tags in the whole Delicious system, as can be seen here [4].
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DEGSeq
Working with DEGseq

Introduction
First we have to choose the way to organize your data. There is two ways to do that: using the MA-plot-based
method with random sampling model or MA-plot-based method with technical replicates. MA-plot-based method
with random sampling model

The MA-plot is a statistical analysis tool that having been used to detect and visualize intensity-dependent ratio of
microarray data. Let C1 and C2 denote the counts of reads mapped to a specific gene obtained from two samples,
with Ci ~ binomial(ni, pi), I = 1,2, where ni denotes the total number of mapped reads and pi denotes the probability
of a read coming from that gene. We define M = log2C1 - log2C2, and A = (log2C1 + log2C2)/2. It can be proven
that under the random sampling assumption the conditional distribution of M given that A = a (a is an observation of
A), follows an approximate normal distribution. For each gene on the MA-plot, we do the hypothesis test of H0: p1 =
p2 versus H1: p1 ≠ p2. Then a P-value could be assigned based on the conditional normal distribution.
MA-plot-based method with technical replicates

Though it has been reported that sequencing platform has low background noise, technical replicates would still be
informative for quality control and to estimate the variation due to different machines or platforms. MA-plot-based is
a another method which estimates the noise level by comparing technical replicates in the data (if available). In this
method, a sliding-window is first applied on the MA-plot of the two technical replicates along the A-axis to estimate
the random variation corresponding to different expression levels. A smoothed estimate of the intensity-dependent
noise level is done by loess regression, and converted to local standard deviations of M conditioned on A, under the
assumption of normal distribution. The local standard deviations are then used to identify the difference of the gene
expression between the two samples.
Multiple testing correction

For the above methods, the P-values calculated for each gene are adjusted to Q-values for multiple testing
corrections. Users can set either a P-value or a false discovery rate (FDR) threshold to identify differentially
expressed genes.
Once you choose your data, you can apply the R package DEGseq. There are five different methods to run the
program. They are DEGexp, DEGseq, readGeneExp, samWrapper and getGeneExp.

http://www.delicious.com
http://homepages.dcc.ufmg.br/~gmenezes/delicious-sequence/delicious-sequence.txt
http://homepages.dcc.ufmg.br/~gmenezes/delicious-sequence/delicious-out.txt
http://delicious.com/tag
http://www.telecompaper.com/news/article.aspx?cid=653579
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.6042
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Functions of Package

DEGexp
Description

This function is used to identify differentially expressed genes when users already have the gene expression values
(such as the number of reads mapped to each gene).
Usage

DEGexp( geneExpFile1, geneCol1=1, expCol1=2, depth1=rep(0, length(expCol1) ),

groupLabel1=" geneExpFile2, geneCol2=1, expCol2=2, depth2=rep(0,

length(expCol2) ), groupLabel2=" header=TRUE, sep="", method=c("LRT", "CTR",

"FET", "MARS", "MATR", "FC"), pValue=1e-3, zScore=4, qValue=1e-3,

foldChange=4, thresholdKind=1, outputDir="none", normalMethod=c("none",

"loess", "median"), replicate1="none", geneColR1=1, expColR1=2, depthR1=rep(0,

length(expColR1) ), replicate2="none", geneColR2=1, expColR2=2, depthR2=rep(0,

length(expColR2) ), rawcount=TRUE )

Arguments

Argument Description

geneExpFile1 file containing gene expression values for replicates of sample1 (or replicate1 when method="CTR").

geneCol1 gene id column in geneExpFile1.

expCol1 expression value columns in geneExpFile1 for replicates of sample1 (numeric vector). Note: Each column corresponds to a
replicate of sample1.

depth1 the total number of reads uniquely mapped to genome for each replicate of sample1 (numeric vector), default: take the total
number of reads mapped to all annotated genes as the depth for each replicate.

groupLabel1 label of group1 on the plots.

GeneExpFile2 file containing gene expression values for replicates of sample2 (or replicate2 when method="CTR").

geneCol2 gene id column in geneExpFile2.

expCol2 expression value columns in geneExpFile2 for replicates of sample2 (numeric vector). Note: Each column corresponds to a
replicate of sample2.

depth2 the total number of reads uniquely mapped to genome for each replicate of sample2 (numeric vector), default: take the total
number of reads mapped to all annotated genes as the depth for each replicate.

groupLabel2 label of group2 on the plots.

header a logical value indicating whether geneExpFile1 and geneExpFile2 contain the names of the variables as its first line.

sep the field separator character. If sep = "" (the default for read.table) the separator is white space, that is one or more spaces, tabs,
newlines or carriage returns.

method method to identify differentially expressed genes. Possible methods are: • "LRT": Likelihood Ratio Test (Marioni et al. 2008),•
"CTR": Check whether the variation between Technical Replicates can be explained by the random sampling model (Wang et al.
2009), • "FET": Fisher’s Exact Test (Joshua et al. 2009), • "MARS": MA-plot-based method with Random Sampling model
(Wang et al. 2009), • "MATR": MA-plot-based method with Technical Replicates (Wang et al.2009), • "FC" : Fold-Change
threshold on MA-plot.

pValue pValue threshold (for the methods: LRT, FET, MARS, MATR). only used when thresholdKind=1.

zScore zScore threshold (for the methods: MARS, MATR). only used when thresholdKind=2.

qValue qValue threshold (for the methods: LRT, FET, MARS, MATR). only used when thresholdKind=3 or thresholdKind=4.

thresholdKind the kind of threshold. Possible kinds are: • 1: pValue threshold, • 2: zScore threshold, • 3: qValue threshold (Benjamini et al.
1995), • 4: qValue threshold (Storey et al. 2003).
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foldChange fold change threshold on MA-plot (for the method: FC).

outputDir the output directory.

normalMethod the normalization method: "none", "loess", "median". recommend: "none".

replicate1 file containing gene expression values for replicate batch1 (only used when method="MATR"). Note: replicate1 and replicate2
are two (groups of) technical replicates of a sample.

GeneColR1 gene id column in the expression file for replicate batch1 (only used when method="MATR").

expColR1 expression value columns in the expression file for replicate batch1 (numeric vector) (only used when method="MATR").

depthR1 the total number of reads uniquely mapped to genome for each replicate in replicate batch1 (numeric vector), default: take the
total number of reads mapped to all annotated genes as the depth for each replicate (only used when method="MATR").

ReplicateLabel1 label of replicate batch1 on the plots (only used when method="MATR").

replicate2 file containing gene expression values for replicate batch2 (only used when method="MATR"). Note: replicate1 and replicate2
are two (groups of) technical replicates of a sample.

geneColR2 gene id column in the expression file for replicate batch2 (only used when method="MATR").

expColR2 expression value columns in the expression file for replicate batch2 (numeric vector) (only used when method="MATR").

depthR2 the total number of reads uniquely mapped to genome for each replicate in replicate batch2 (numeric vector), default: take the
total number of reads mapped to all annotated genes as the depth for each replicate (only used when method="MATR").

ReplicateLabel2 label of replicate batch2 on the plots (only used when method="MATR").

rawCount a logical value indicating the gene expression values are based on raw read counts or normalized values.

Example:

> library(DEGseq)

> geneExpFile <- system.file("data", "GeneExpExample5000.txt",

+ package = "DEGseq")

> if (geneExpFile == "") {

+ zipFile <- system.file("data", "Rdata.zip", package = "DEGseq")

+ if (zipFile != "") {

+ unzip(zipFile, "GeneExpExample5000.txt", exdir = tempdir())

+ geneExpFile <- file.path(tempdir(), "GeneExpExample5000.txt")

+ }

+ }

> layout(matrix(c(1, 2, 3, 4, 5, 6), 3, 2, byrow = TRUE))

> par(mar = c(2, 2, 2, 2))

> DEGexp(geneExpFile1 = geneExpFile, expCol1 = c(7, 9, 12, 15, 18), 

groupLabel1 = "kidney", geneExpFile2 = geneExpFile, expCol2 = c(8, 10, 

11, 13, 16), groupLabel2 = "liver", method = "MARS")

Please wait...

geneExpFile1: 

D:/myrpackage/DEGseq.Rcheck/DEGseq/data/GeneExpExample5000.txt

gene id column in geneExpFile1: 1

expression value column(s) in geneExpFile1: 7 9 12 15 18

total number of reads uniquely mapped to genome obtained from sample1: 

345504 354981 334557 
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geneExpFile2: 

D:/myrpackage/DEGseq.Rcheck/DEGseq/data/GeneExpExample5000.txt

gene id column in geneExpFile2: 1

expression value column(s) in geneExpFile2: 8 10 11 13 16

total number of reads uniquely mapped to genome obtained from sample2: 

274430 274486 264999

method to identify differentially expressed genes: MARS

pValue threshold: 0.001

output directory: none

The outputDir is not specified!

Please wait …
Identifying differentially expressed genes ...

Please wait patiently ...

output …
The results can be observed in directory: none

From Wang et. Al (2009) [1]

DEGseq
Description

This function is used to identify differentially expressed genes from RNA-seq data. It takes uniquely mapped reads
from RNA-seq data for the two samples with a gene annotation as input. So users should map the reads (obtained
from sequencing libraries of the samples) to the corresponding genome in advance.
Usage

DEGseq ( mapResultBatch1, mapResultBatch2, fileFormat="bed", readLength=32, strandInfo=FALSE, refFlat,
groupLabel1="group1", groupLabel2="group2", method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"),
pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1, outputDir="none",
normalMethod=c("none", "loess", "median"), depthKind=1, replicate1="none", replicate2="none",
replicateLabel1="replicate1", replicateLabel2="replicate2" )
Arguments

Argument Description

mapResultBatch1 uniquely mapping result files for technical replicates of sample1 (or replicate1 when method="CTR").

MapResultBatch2 uniquely mapping result files for technical replicates of sample2 (or replicate2 when method="CTR").

fileFormat file format: "bed" or "eland". example of "bed" format: chr12 7 38 readID 2 example of "eland" format: readID chr12.fa 7 U2 F
Note: The field separator character is TAB. And the files must follow the format as one of the examples.

ReadLength the length of the reads (only used if fileFormat="eland"). strandInfo whether the strand information was retained during the
cloning of the cDNAs. "TRUE" : retained, "FALSE": not retained.

RefFlat gene annotation file in UCSC refFlat format.

GroupLabel1 label of group1 on the plots.

GroupLabel2 label of group2 on the plots.

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/1/136|
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Method method to identify differentially expressed genes. Possible methods are: "LRT": Likelihood Ratio Test, "CTR": Check whether
the variation between two Technical Replicates can be explained by the random sampling model, "FET": Fisher’s Exact Test,
"MARS": MA-plot-based method with Random Sampling model, "MATR": MA-plot-based method with Technical Replicates,
"FC" : Fold-Change threshold on MA-plot.

pValue pValue threshold (for the methods: LRT, FET, MARS, MATR). only used when thresholdKind=1.

zScore zScore threshold (for the methods: MARS, MATR). only used when thresholdKind=2.

qValue qValue threshold (for the methods: LRT, FET, MARS, MATR). only used when thresholdKind=3 or thresholdKind=4.

ThresholdKind the kind of threshold. Possible kinds are: • 1: pValue threshold, • 2: zScore threshold, • 3: qValue threshold, • 4: qValue
threshold .

foldChange fold change threshold on MA-plot (for the method: FC).

outputDir the output directory.

normalMethod the normalization method: "none", "loess", "median". recommend: "none".

DepthKind 1- take the total number of reads uniquely mapped to genome as the depth for each replicate, 0: take the total number of reads
uniquely mapped to all annotated genes as the depth for each replicate. We recommend taking depthKind=1, especially when
the genes in annotation file are part of all genes.

replicate1 files containing uniquely mapped reads obtained from replicate batch1 (only used when method="MATR").

replicate2 files containing uniquely mapped reads obtained from replicate batch2 (only used when method="MATR").

ReplicateLabel1 label of replicate batch1 on the plots (only used when method="MATR").

ReplicateLabel2 label of replicate batch2 on the plots (only used when method="MATR").

Example:
> kidneyR1L1 <- system.file("data", "kidneyChr21.bed.txt", package = "DEGseq") > liverR1L2 <-
system.file("data", "liverChr21.bed.txt", package = "DEGseq") > refFlat <- system.file("data", "refFlatChr21.txt",
package = "DEGseq") > mapResultBatch1 <- c(kidneyR1L1) > mapResultBatch2 <- c(liverR1L2) > outputDir <-
file.path(tempdir(), "DEGseqExample") > DEGseq(mapResultBatch1, mapResultBatch2, fileFormat = "bed",refFlat
= refFlat, outputDir = outputDir, method = "LRT")
Please wait...
mapResultBatch1: D:/myrpackage/DEGseq.Rcheck/DEGseq/data/kidneyChr21.bed.txt mapResultBatch2:
D:/myrpackage/DEGseq.Rcheck/DEGseq/data/liverChr21.bed.txt file format: bed refFlat:
D:/myrpackage/DEGseq.Rcheck/DEGseq/data/refFlatChr21.txt Ignore the strand information when count the reads
mapped to genes! Count the number of reads mapped to each gene ... This will take several minutes, please wait
patiently!
Please wait...
SampleFiles: D:/myrpackage/DEGseq.Rcheck/DEGseq/data/kidneyChr21.bed.txt Count the number of reads
mapped to each gene. This will take several minutes.
Please wait …
total 259 unique genes processed 0 reads (kidneyChr21.bed.txt) processed 10000 reads (kidneyChr21.bed.txt)
processed 20000 reads (kidneyChr21.bed.txt) processed 30000 reads (kidneyChr21.bed.txt) processed 34304 reads
(kidneyChr21.bed.txt) total used 0.328000 seconds!
Please wait...
SampleFiles: D:/myrpackage/DEGseq.Rcheck/DEGseq/data/liverChr21.bed.txt Count the number of reads mapped
to each gene. This will take several minutes.
Please wait …



DEGSeq 74

total 259 unique genes processed 0 reads (liverChr21.bed.txt) processed 10000 reads (liverChr21.bed.txt) processed
20000 reads (liverChr21.bed.txt) processed 30000 reads (liverChr21.bed.txt) processed 30729 reads
(liverChr21.bed.txt) total used 0.297000 seconds!
Please wait...
geneExpFile1: C:\DOCUME~1\wanglk\LOCALS~1\Temp\RtmpUvf7Fw/DEGseqExample/group1.exp gene id
column in geneExpFile1: 1 expression value column(s) in geneExpFile1: 2 total number of reads uniquely mapped to
genome obtained from sample1: 34304 geneExpFile2:
C:\DOCUME~1\wanglk\LOCALS~1\Temp\RtmpUvf7Fw/DEGseqExample/group2.exp gene id column in
geneExpFile2: 1 expression value column(s) in geneExpFile2: 2 total number of reads uniquely mapped to genome
obtained from sample2: 30729 method to identify differentially expressed genes: LRT pValue threshold: 0.001
output directory: C:\DOCUME~1\wanglk\LOCALS~1\Temp\RtmpUvf7Fw/DEGseqExample
Please wait …
Identifying differentially expressed genes ... Please wait patiently ... output ...
Done ... The results can be observed in directory: C:\DOCUME~1\wanglk\LOCALS~1\Temp\RtmpUvf7Fw/DEGs

getGeneExp
Description

This function is used to count the number of reads and calculate the RPKM for each gene. It takes uniquely mapped
reads from RNA-seq data for a sample with a gene annotation file as input. So users should map the reads (obtained
from sequencing library of the sample) to the corresponding genome in advance.
Usage

getGeneExp( mapResultBatch, fileFormat="bed", readLength=32, strandInfo=FALSE, refFlat,
output=paste(mapResultBatch[1],".exp",sep=""), min.overlapPercent= 1 )
Arguments

Argument Description

mapResultBatch a vector containing uniquely mapping result files for a sample. Note: The sample can have multiple technical replicates.

fileFormat file format: "bed" or "eland". example of "bed" format: chr12 7 38 readID 2 example of "eland" format: readID chr12.fa 7 U2
F Note: The field separator character is TAB. And the files must follow the format as one of the examples.

readLength the length of the reads (only used if fileFormat="eland"). strandInfo whether the strand information was retained during the
cloning of the cDNAs. • "TRUE" : retained, • "FALSE": not retained.

refFlat gene annotation file in UCSC refFlat format.

output the output file.

min.overlapPercent the minimum percentage of the overlapping length for a read and an exon over the length of the read itself, for counting this
read from the exon. should be <=1. 0: at least 1 bp overlap between a read and an exon.

Example:
> kidneyR1L1 <- system.file("data", "kidneyChr21.bed.txt", package = "DEGseq") > refFlat <- system.file("data", 
"refFlatChr21.txt", package = "DEGseq") > mapResultBatch <- c(kidneyR1L1) > output <- file.path(tempdir(), 
"kidneyChr21.bed.exp") > getGeneExp(mapResultBatch, refFlat = refFlat, output = output) Please wait... 
SampleFiles: D:/myrpackage/DEGseq.Rcheck/DEGseq/data/kidneyChr21.bed.txt Count the number of reads 
mapped to each gene. This will take several minutes. Please wait ... total 259 unique genes processed 0 reads 
(kidneyChr21.bed.txt) processed 10000 reads (kidneyChr21.bed.txt) processed 20000 reads (kidneyChr21.bed.txt) 
processed 30000 reads (kidneyChr21.bed.txt) processed 34304 reads (kidneyChr21.bed.txt) total used 0.328000 
seconds! > exp <- readGeneExp(file = output, geneCol = 1, valCol = c(2, + 3), label = c("raw count", "RPKM")) >
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exp[30:32, ] raw count RPKM C21orf131 0 0.000 C21orf15 0 0.000 C21orf2 51 665.789

readGeneExp
Description
This method is used to read gene expression values from a file to a matrix in R workspace. So that the matrix can be
used as input of other packages, such as edgeR. The input of the method is a file that contains gene expression
values.
Usage
readGeneExp(file, geneCol=1, valCol=2, label = NULL, header=TRUE, sep="")
Arguments
Argument Descripition file file containing gene expression values. GeneCol gene id column in file. valCol
expression value columns to be read in the file. label label for the columns. Header a logical value indicating whether
the file contains the names of the variables as its first line. sep the field separator character. If sep = "" (the default
for read.table) the separator is white space, that is one or more spaces, tabs, newlines or carriage returns.
Example:
> geneExpFile <- system.file("data", "GeneExpExample1000.txt", + package = "DEGseq") > exp <-
readGeneExp(file = geneExpFile, geneCol = 1, valCol = c(7, + 9, 12, 15, 18, 8, 10, 11, 13, 16)) > exp[30:32, ]
R1L1Kidney

R1L3Kidney

R1L7Kidney

R2L2Kidney

R2L6Kidney ENSG00000188976 73 77 68 70 82 ENSG00000187961 15 15 13 12 15 ENSG00000187583 1 1 3 0 3
R1L2Liver

R1L4Liver

R1L6Liver

R1L8Liver 

R2L3Liver ENSG00000188976 34 56 45 55 42 ENSG00000187961 8 13 11 12 20 ENSG00000187583 0 1 0 0 2

samWrapper
Description
This function is a wrapper of the functions in samr. It is used to identify differentially expressed genes for two sets of
samples with multiple replicates or two groups of samples from different individuals (e.g. disease samples vs. control
samples).
Usage
samWrapper( geneExpFile1, geneCol1=1, expCol1=2, measure1=rep(1, length(expCol1) ), geneExpFile2,
geneCol2=1, expCol2=2, measure2=rep(2, length(expCol2) ), header=TRUE, sep="", paired=FALSE, s0=NULL,
s0.perc=NULL, nperms=100, testStatistic= c("standard","wilcoxon"), max.qValue=1e-3,
in.foldchange=logged2=FALSE, output )
Arguments
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Argument Description geneExpFile1 file containing gene expression values for group1. geneCol1 gene id column in
geneExpFile1. expCol1 expression value columns in geneExpFile1. See the example. measure1
numeric vector of outcome measurements for group1. like c(1,1,1...) when paired=FALSE, or like c(-1,-2,-3,...) when paired=TRUE.

geneExpFile2 file containing gene expression values for group2. geneCol2 gene id column in geneExpFile2.
ExpCol2 expression value columns in geneExpFile2. See the example. Measure2 numeric vector of outcome
measurements for group2. like c(2,2,2...) when paired=FALSE, or like c(1,2,3,...) when paired=TRUE. header a
logical value indicating whether geneExpFile1 and geneExpFile2 contain the names of the variables as its first line.
sep the field separator character. If sep = "" (the default for read.table) the separator is white space, that is one or
more spaces, tabs, newlines or carriage returns. paired a logical value indicating whether the samples are paired. s0
exchangeability factor for denominator of test statistic; Default is automatic choice. s0.perc percentile of standard
deviation values to use for s0; default is automatic choice; -1 means s0=0 (different from s0.perc=0, meaning
s0=zeroeth percentile of standard deviation values= min of sd values. Nperms number of permutations used to
estimate false discovery rates. TestStatistic test statistic to use in two class unpaired case. Either "standard"
(t-statistic) or "wilcoxon" (Two-sample wilcoxon or Mann-Whitney test). recommend "standard". max.qValue the
max qValue desired; shoube be <1. min.foldchange the minimum fold change desired; should be >1. default is zero,
meaning no fold change criterion is applied. logged2 a logical value indicating whether the expression values are
logged2. output the output file.
Example
> geneExpFile <- system.file("data", "GeneExpExample1000.txt", + package = "DEGseq") > set.seed(100) >
geneExpFile1 <- geneExpFile > geneExpFile2 <- geneExpFile > output <- file.path(tempdir(),
"samWrapperOut.txt") > expCol1 = c(7, 9, 12, 15, 18) > expCol2 = c(8, 10, 11, 13, 16) > measure1 = c(-1, -2, -3, -4,
-5) > measure2 = c(1, 2, 3, 4, 5) > samWrapper(geneExpFile1 = geneExpFile1, geneCol1 = 1, expCol1 = expCol1,
measure1 = measure1, geneExpFile2 = geneExpFile2, geneCol2 = 1, expCol2 = expCol2, measure2 = measure2,
nperms = 100, min.foldchange = 2, max.qValue = 1e-04, output = output, paired = TRUE)
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K-Means

Introduction
Clustering techniques have a wide use and importance nowadays. This importance tends to increase as the amount of
data grows and the processing power of the computers increases. Clustering applications are used extensively in
various fields such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing.
The main purpose of clustering techniques is to partitionate a set of entities into different groups, called clusters.
These groups may be consistent in terms of similarity of its members. As the name suggests, the representative-based
clustering techniques uses some form of representation for each cluster. Thus, every group has a member that
represents it. The motivation to use such clustering techniques is the fact that, besides reducing the cost of the
algorithm, the use of representatives makes the process easier to understand. There are many decisions that have to
be made in order to use the strategy of representative-based clustering. For example, there is an obvious trade-off
between the number of clusters and the internal cohesion of them. If there are few clusters, the internal cohesion
tends to be small. Otherwise, a large number of clusters makes them very close, so that there is little difference
between adjacent groups. Another decision is whether the clusters should be mutually exclusive or not, that is, if an
entity can co-exist in more than one cluster at the same time.

Technique to be discussed
In this work, we focus on K-Means algorithm, which is probably the most popular technique of representative-based
clustering. In the first section, we give a brief explanation of how the algorithm works.

Algorithm
K-Means is a simple learning algorithm for clustering analysis. The goal of K-Means algorithm is to find the best
division of n entities in k groups, so that the total distance between the group's members and its corresponding
centroid, representative of the group, is minimized. Formally, the goal is to partition the n entities into k sets Si, i=1,
2, ..., k in order to minimize the within-cluster sum of squares (WCSS), defined as:

where term provides the distance between an entity point and the cluster's centroid.
The most common algorithm, described below, uses an iterative refinement approach, following these steps:
• Define the initial groups' centroids. This step can be done using different strategies. A very common one is to

assign random values for the centroids of all groups. Another approach is to use the values of K different entities
as being the centroids.

•• Assign each entity to the cluster that has the closest centroid. In order to find the cluster with the most similar
centroid, the algorithm must calculate the distance between all the entities and each centroid.

•• Recalculate the values of the centroids. The values of the centroid's fields are updated, taken as the average of the
values of the entities' attributes that are part of the cluster.

•• Repeat steps 2 and 3 iteratively until entities can no longer change groups.

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/1/136|
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The K-Means is a greedy, computationally efficient technique, being the most popular representative-based
clustering algorithm. The pseudocode of the K-Means algorithm is shown below.

Implementation
In order to use the K-Means algorithm in R, one must have the stats package installed. This package includes a
function that performs the K-Mean process, according to different algorithms. These algorithms are described below:
•• Lloyd

Given any set of k centers Z, for each center z in Z, let V(z) denote its neighborhood. That is the set of data
points for which z is the nearest neighbor. Each stage of Lloyd's algorithm moves every center point z to the
centroid of V(z) and then updates V(z) by recomputing the distance from each point to its nearest center.
These steps are repeated until convergence. Note that Lloyd's algorithm can get stuck in locally minimal
solutions that are far from the optimal. For this reason it is common to consider heuristics based on local
search, in which centers are swapped in and out of an existing solution (typically at random). Such a swap is
accepted only if it decreases the average distortion, otherwise it is ignored.

•• Forgy

Forgy's algorithm is a simple alternating least-squares algorithm consisting of the following steps:
•• Initialize the codebook vectors. (Suppose that when processing a given training case, N cases have been

previously assigned to the winning codebook vector.)
•• Repeat the following two steps until convergence:

1.1. Read the data, assigning each case to the nearest (using Euclidean distance) codebook vector.
2.2. Replace each codebook vector with the mean of the cases that were assigned to it.

•• MacQueen

This algorithm works by repeatedly moving all cluster centers to the mean of their respective Voronoi sets.
•• Hartigan and Wong

http://en.wikibooks.org/w/index.php?title=File:Algorithm_kmeans.png
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Given n objects with p variables measured on each object x(i,j) for i = 1,2,...,n; j = 1,2,...,p; K-means allocates
each object to one of K groups or clusters to minimize the within-cluster sum of squares:

where is the mean variable j of all elements in group K.
In addition to the data matrix, a K x p matrix giving the initial cluster centers for the K clusters is required.
The objects are then initially allocated to the cluster with the nearest cluster mean. Given the initial allocation,
the procedure is to iteratively search for the K-partition with locally optimal within-cluster sum of squares by
moving points from one cluster to another.

The K-Means function, provided by the stats package, might be used as follow:

kmeans(x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"))

where the arguments are:
• x: A numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data

frame with all numeric columns).
• centers: Either the number of clusters or a set of initial (distinct) cluster centers. If a number, a random set of

(distinct) rows in x is chosen as the initial centers.
• iter.max: The maximum number of iterations allowed.
• nstart: If centers is a number, nstart gives the number of random sets that should be chosen.
• algorithm: The algorithm to be used. It should be one of "Hartigan-Wong", "Lloyd", "Forgy" or "MacQueen". If

no algorithm is specified, the algorithm of Hartigan and Wong is used by default.
If everything goes OK, an object of class kmeans is returned. This object has the following components:
• cluster: A vector of integers indicating the cluster to which each point is allocated.
• centers: A matrix of cluster centers.
• whithnss: The within-cluster sum of squares for each cluster.
• size: The number of points in each cluster.

View
There are actually two ways of viewing the result of a K-Means use. Both of them use the object of class kmeans
returned by the function application.
The first way is to plot the object, creating a chart that represents the data. Thus, if there are N objects divided into K
clusters, the chart must contain N points representing the objects, and those points must be colored in K different
colors, each one representing a cluster set. For example, given the object km, which is a result of the function kmeans
application, all one has to do in order to plot the object is:

plot(km)

The second way of viewing the result of a K-Means application is to simply print the components of the object of
class kmeans. For example, given the same object km of the previous example, one could print its components using:

print(km)

Example

Suppose we have four objects and each object have two attributes (or features), as shown in table below.



K-Means 80

Table 1: Table representing objects

Object Attribute X Attribute Y

A 1 1

B 2 1

C 4 3

D 5 4

Our goal is to group these objects into K=2 groups based on their two features. The function K-Means can be used to
define the groups as follow:

# prepare matrix of data

cells <- c(1, 1, 2, 1, 4, 3, 5, 4)

rnames <- c("A", "B", "C", "D")

cnames <- c("X", "Y")

x <- matrix(cells, nrow=4, ncol=2, byrow=TRUE, dimnames=list(rnames, cnames))

# run K-Means

km <- kmeans(x, 2, 15)

# print components of km

print(km)

# plot clusters

plot(x, col = km$cluster)

# plot centers

points(km$centers, col = 1:2, pch = 8)

Result of printing components of km:

K-means clustering with 2 clusters of sizes 2, 2

Cluster means:

    X   Y

1 1.5 1.0

2 4.5 3.5

Clustering vector:

A B C D

1 1 2 2

Within cluster sum of squares by cluster:

[1] 0.5 1.0

Available components:

[1] "cluster"  "centers"  "withinss" "size"  

Result of plotting:
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Case Study
In this section, we illustrate a case study using K-Means.

Scenario
The differences between countries go far beyond the physical and territorial aspects. Hence, for analytical purposes,
it is very common to classify countries in groups based on some of their attributes. A traditional classification
divides countries into developed, emerging and underdeveloped. In this division, many criteria, such per capita
income and life expectancy, can be considered.
The k-means algorithm is a technique for grouping entities according to the similarity of their attributes. As the
presenting problem consists of dividing countries into similar groups, it is plausible that K-means can be applied to
this task.
Let's consider the scenario where countries need to be classified into the three already mentioned groups: developed,
emerging and underdeveloped. To analyze their similarity and assign them to the groups, the following attributes
should be taken into account:
•• per capita income;
•• literacy;
•• infant mortality;
•• life expectancy;

http://en.wikibooks.org/w/index.php?title=File:Kmeans_plotting.png
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Input data
The input data is a table containing the numeric values of attributes for each considered country. The table consists
of nineteen lines, representing countries and five columns (including the first containing the name of the country),
representing the attributes. The table can be loaded from a spreadsheet or from a text file. To preserve the semantics
of the clusters, all the values used in this example are real statistics of the countries.

Table 2: Input Data

Country Per capita income Literacy Infant mortality Life expectancy

Brazil 10326 90 23.6 75.4

Germany 39650 99 4.08 79.4

Mozambique 830 38.7 95.9 42.1

Australia 43163 99 4.57 81.2

China 5300 90.9 23 73

Argentina 13308 97.2 13.4 75.3

United Kingdom 34105 99 5.01 79.4

South Africa 10600 82.4 44.8 49.3

Zambia 1000 68 92.7 42.4

Namibia 5249 85 42.3 52.9

Georgia 4200 100 17.36 71

Pakistan 3320 49.9 67.5 65.5

India 2972 61 55 64.7

Turkey 12888 88.7 27.5 71.8

Sweden 34735 99 3.2 80.9

Lithuania 19730 99.6 8.5 73

Greece 36983 96 5.34 79.5

Italy 26760 98.5 5.94 80

Japan 34099 99 3.2 82.6

Execution
The function "kmeans" can be used to define the groups of countries as follows:

# import data (assume that all data in "data.txt" is stored as comma separated values)

x <- read.csv("data.txt", header=TRUE, row.names=1)

# run K-Means

km <- kmeans(x, 3, 15)

 

# print components of km

print(km)

# plot clusters

plot(x, col = km$cluster)
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# plot centers

points(km$centers, col = 1:2, pch = 8)

The value of the second parameter of "kmeans" was passed as the number 3, because we want to get three groups of
countries.

Output
The result of printing the components of the class returned by the function application is shown below:

K-means clustering with 3 clusters of sizes 5, 7, 7

Cluster means:

  Per_capita_income Literacy Infant_mortality Life_expectancy

1         13370.400    91.58        23.560000        68.96000

2          3267.286    70.50        56.251429        58.80000

3         35642.143    98.50         4.477143        80.42857

Clustering vector:

        Brazil        Germany     Mozambique      Australia          China

             1              3              2              3              2

     Argentina United_Kingdom   South_Africa         Zambia        Namibia

             1              3              1              2              2

       Georgia       Pakistan          India        Turkey         Sweden

             2              2              2              1              3

     Lithuania         Greece          Italy          Japan

             1              3              3              3

Within cluster sum of squares by cluster:

[1]  57626083  20109876 158883600

Available components:

[1] "cluster"  "centers"  "withinss" "size" 

The result of plotting the class returned by the function application is shown below:
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data= 5.0 3.5 1.3 0.3 -1 5.5 2.6 4.4 1.2 0 6.7 3.1 5.6 2.4 1 5.0 3.3 1.4 0.2 -1 5.9 3.0 5.1 1.8 1 5.8 2.6 4.0 1.2 0
The implementation of k-means generated three clusters, relatively homogeneous, consisting of 5, 7 and 7 countries.
Analyzing the cluster means, we can relate each group with each of the three classes of countries:
•• the cluster formed by Germany, United Kingdom, Greece, Australia, Japan, Italy and Sweden, has the highest per

capita income, literacy and life expectancy and the lowest infant mortality. So, this cluster represents the
developed countries.

•• the cluster formed by Mozambique, Georgia, Pakistan, India, Zambia and Namibia has the lowest values for all
attributes and, therefore, represents the undeveloped countries.

•• the cluster formed by the other countries, Brazil, South Africa, Turkish, Argentina and Lithuania represents the
group of emerging countries.

To enhance the quality of the classification made by K-Means, the resulting division of the groups was compared
with the classification of all countries by Human Development Index as included in the United Nations Development
Program's Human Development Report released on October 5, 2009, compiled on the basis of data from 2007. The
Human Development Index (HDI) is a comparative measure of well-being that considers aspects like life
expectancy, literacy, and education. Compared with the division by the HDI, only four countries have been classified
into different groups: Namibia, Georgia, Pakistan and India. These countries should have been placed in the
"developing" rather than into "undeveloped" group.

http://en.wikibooks.org/w/index.php?title=File:Kmeans_plotting2.png
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Hybrid Hierarchical Clustering
A Hybrid Hierarchical Clustering is a clustering technique that try to combine the best characteristics of both
Hierarchical Techniques (Agglomerative and Divisive).

Introduction
Clustering can be considered an important unsupervised learning problem, which tries to find similar structures
within an unlabeled data collection (JAIN, MURTY, FLYNN, 1999) [1].
These similar structures are data groups, better known as clusters. The data inside each cluster is similar (or close) to
elements within his cluster, and is dissimilar (or further) to elements that belongs to other clusters. The clustering
techniques' goal is to determinate the intrinsic grouping in a data set (JAIN, MURTY, FLYNN, 1999) .

Clustering Techniques
There are several clustering techniques but none can be considered the absolute best method. Each technique has his
own merits and flaws, which usually leave the job to the user to determine what clustering method, will better satisfy
his needs.

Hierarchical Clustering
The hierarchical clustering functions basically in joining closest clusters until the desired number of clusters is
achieved. This kind of hierarchical clustering is named agglomerative because it joins the clusters iteratively. There
is also a divisive hierarchical clustering that does a reverse process, every data item begin in the same cluster and
then it is divided in smaller groups (JAIN, MURTY, FLYNN, 1999).
The distance measurement between clusters can be done in several ways, and that's how hierarchical clustering
algorithms of single, average and complete differ.
In the single-link clustering, also known as minimum method, the distance between two clusters is considered to be
the minimum distance between all pairs of data items. In the complete link clustering, also known as maximum
method, the distance between two clusters is considered to be the maximum distance between all pairs of data items.
The clusters found by the complete link algorithm are usually more compact than the ones found by the single link.
However, the single link algorithm is more versatile (JAIN, MURTY, FLYNN, 1999).
In the average link clustering, the distance between two clusters is equal to the average distance between all data. A
variation of this method uses median distance, which is less sensitive to greater data variation than the average
distance.

http://www.dcc.ufmg.br/miningalgorithms/DokuWiki/doku.php
http://cran.r-project.org/web/packages/cluster/index.html
http://www.dcc.ufmg.br/miningalgorithms/DokuWiki/doku.php
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Many hierarchical clustering algorithms have an appealing property that the nested sequence of clusters can be
graphically represented with a tree, called a 'dendrogram' (CHIPMAN, TIBSHIRANI, 2006)[2]. Figure 1 shows an
dendogram example.

Figure 1: A dendogram obtained using a single-link agglomerative clustering algorithm. Source: Jain, Murty, Flynn
(1999).
The greatest disadvantage of the hierarchical clustering is his high complexity order of O(n^2 log n) (JAIN,
MURTY, FLYNN, 1999). The Hierarchical approach however has the advantage of handling clusters with different
densities, much better than other clustering techniques.

Hybrid Hierarchical Clustering
Agglomerative algorithms group data into many small clusters and few large ones, which usually makes them good
at identifying small clusters but not large ones. Divisive algorithms however, have reserved characteristics; making
them good at identifying large clusters in general (CHIPMAN, TIBSHIRANI, 2006).
Hybrid Hierarchical Clustering Techniques try to combine the best advantages of both Agglomerative and Divisive
techniques (LAAN, POLLARD, 2002; CHIPMAN, TIBSHIRANI, 2006)[3]. The way this combination is
implemented depends on the chosen algorithm.
In this section it will be presented a hybrid hierarchical algorithm that uses the concept of 'mutual cluster' to combine
the divisive techniques procedures with information gained from a preliminary agglomerative clustering.

http://en.wikibooks.org/w/index.php?title=File:Agglomerative_clustering_dendogram.png
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Mutual Cluster
A mutual cluster can be defined as a group of data that are collectively closer to each other than to any other data,
and distant from all other data. The data contained in a mutual cluster should never be separated (CHIPMAN,
TIBSHIRANI, 2006).
Basically that requires in a mutual cluster that, the largest distance between data elements in S to be smaller than the
smallest distance from an element in S to any data not in S:

Where S is a subset of the data, d is a distance function between two data items, x is an element belonging to S, and
y is an element that does not belong to S.
There is an interesting mutual cluster's property which indicates that a mutual cluster is not broken by an
agglomerative clustering with any of single, average or complete linkage approaches (CHIPMAN, TIBSHIRANI,
2006). For more information on single, average or complete linkage approaches, see the agglomerative techniques in
the hierarchical clustering section.
This property has several implications on mutual clusters. The most obvious is to support the idea that mutual
clusters contain strong clustering information, no matter which linkage approach is used. This property also aids in
the interpretation of agglomerative methods. This additional information can aid in the interpretation of mutual
clusters, or in the decision of what clusters to divide.
Another implication of this property would be that mutual clusters can't be broken by agglomerative methods, which
indicates that all mutual clusters can be identified by examining nested clusters in this method.

Algorithm
The hybrid hierarchical algorithm using mutual clusters can be described in three steps:
1.1. Compute the mutual clusters using an agglomerative technique.
2.2. Perform a constrained divisive technique in which each mutual cluster must stay intact. This is accomplished by

temporarily replacing a mutual cluster of data elements by their centroid.
3.3. Once the divisive clustering is complete, divide each mutual cluster by performing another divisive clustering

'within' each mutual cluster.
The mutual cluster property and implications described earlier, indicates how it is possible to use agglomerative
techniques to easily find mutual clusters in Step 1. For Step 2 any top-down method could be employed, it doesn't
even need to be a divisive hierarchical algorithm. In Step 3, an agglomerative method can be used instead. Since
mutual cluster are usually small, the use of either a top-down or bottom-up approach in Step 3 will give similar
results. Using a top-down at both steps 2 and 3 just seems simpler.

Implementation in R
Package: hybridHclust 
Descrption: hybrid hierarchical clustering via mutual clusters 
Version: 1.0-3 
Depends: cluster 
Published: 2008-04-08 
Author: Hugh Chipman, Rob Tibshirani, with tsvq code originally from Trevor Hastie 
Maintainer: Hugh Chipman <hugh.chipman@acadiau.ca> 
License: GPL-2 
URL: http:/ / ace. acadiau. ca/ math/ chipmanh/ hybridHclust 
Repository: CRAN

http://ace.acadiau.ca/math/chipmanh/hybridHclust
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In views: Cluster, Multivariate
To download this package, visit the CRAN Mirrors page and select the mirror closest to your region. Once there
select 'packages' and search for 'hybridHclust'.
Details:

The hybridHclust package uses the mutual cluster concept to construct a clustering in which mutual clusters are
never broken. This is achieved by temporarily "fusing" together all points in a mutual cluster so that they have equal
coordinates. The resultant top-down clusterings are then "stitched" together to form a single top-down clustering
(CHIPMAN, TIBSHIRANI, 2006; 2008)[4].
"Only maximal mutual clusters are constrained to not be broken. Thus if points A, B, C, D are a mutual cluster and
points A, B are also a mutual cluster, only the four points will be forbidden from being broken" (CHIPMAN,
TIBSHIRANI, 2008).
This package uses squared Euclidean distance between rows of x as a distance measurement. In some instances, a
desirable distance measure is d(x1,x2)=1-cor(x1,x2), if x1 and x2 are 2 rows of the matrix x. This correlation-based
distance is equivalent to squared Euclidean distance once rows have been scaled to have mean 0 and standard
deviation 1. This can be accomplished by pre-processing the data matrix before calling the hybrid clustering
algorithm (CHIPMAN, TIBSHIRANI, 2008).
The main method to perform Hybrid clustering is called hybridHclust.
Usage
hybridHclust(x, themc=NULL, trace=FALSE)
Arguments
x - A data matrix whose rows are to be clustered
themc - An object representing the mutual clusters in x, typically generated by mutualCluster function. If it is not
provided, it will be calculated.
trace – Indicates if internal steps be printed as they execute.
Return
A dendogram in hclust format

Visualization
The hybridHClust function returns a dendogram representing the algorithm clusters. A dendogram can be seem using
the 'plot' function.
The mutual clusters can be calculated using the mutual cluster function. The function has a 'plot' parameter that
automatically plots the mutual clusters dendogram on a graph. To print the mutual clusters is necessary to use the
'print.mutualCluster' function.
Please remember to load the hybridHclust R package before trying any of the example codes.

Example
# Function to show multiple graphs plotting, in this case 3 graphs in one row 

par(mfrow=c(1,3))

# An Example Data 

x <- cbind(c(-1.4806,1.5772,-0.9567,-0.92,-1.9976,-0.2723,-0.3153),c( -0.6283,-0.1065,0.428,-0.7777,-1.2939,-0.7796,0.012))

# Plot the example data

plot(x, pch = as.character(1:nrow(x)), asp = 1)

# Calculate the mutual clusters

mc1 <- mutualCluster(x, plot=TRUE)
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print.mutualCluster(mc1) # print the mutual clusters

dist(x) # distance between data so you can verify that mc's are correct

# Calculate the Hybrid Hierarchical Cluster

hyb1 <- hybridHclust(x)

# Plot the Hybrid Clustering Dendogram

plot(hyb1)

Case Study
To better illustrate the clustering technique, it will be shown a simple case study.
The "Big Five", in contemporary psychology, consists of five important personality factors. These five factors have
been found to contain and subsume more-or-less all known personality traits within their five domains and to
represent the basic structure behind all personality traits.
The Big Five factors and their constituent traits can be summarized as follows:
•• Openness - appreciation for art, emotion, adventure, unusual ideas, curiosity, and variety of experience.
•• Conscientiousness - a tendency to show self-discipline, act dutifully, and aim for achievement; planned rather

than spontaneous behavior.
•• Extraversion - energy, positive emotions, urgency, and the tendency to seek stimulation in the company of others.
•• Agreeableness - a tendency to be compassionate and cooperative rather than suspicious and antagonistic towards

others.
•• Neuroticism - a tendency to experience unpleasant emotions easily, such as anger, anxiety, depression, or

vulnerability.
The most common way for a psychologist to measure these factors in someone’s personality, is to apply a 'test' with
descriptive sentences. The test scores for these traits are frequently presented as percentile scores.

Scenario/Situation/Development
Let's assume Big Five scores being applied to a population. In this case the test also comes with a socio-economic
test for research purposes. The tests could be clustered in groups based on their percentile scores in each factor and
the socio-economic variable, so that psychologists may better analyze the results and their possible effect on the
population.

Input Data
The input data is a six dimensional numerical data consisting in the five factors percentile scores and the person’s
family income. The input data was randomly generated using a normal distribution on each dimension. The random
generated data saves time and avoid the legal issue in using a person’s possible privilege information (even
anonymously).
The columns O, C, E, A, N represent respectively Openness, Conscientiousness, Extraversion, Agreableness and
Neuroticism factors. The values on all of these columns are presented as percentile results from the Big Five test.
The percentiles for each factor vary from a minimum of 5 up to a maximum of 95 in intervals of 5.
The column I represent the person’s family income, the value is the number of minimum wages that family earn.
A csv file with the input data can be found here: HybridHClust Case Study CSV Input File [5]

http://rapidshare.com/files/321641297/hybridHclust_case_study_input.csv.html


Hybrid Hierarchical Clustering 90

O C E A N I

1. 10 30 40 55 45 12

2. 50 85 25 30 40 6

3. 95 90 80 50 5 10

4. 20 65 20 15 50 5

5. 50 25 65 10 95 13

6. 40 85 25 10 65 10

7. 55 50 90 90 75 9

8. 35 80 5 40 35 10

9. 30 65 85 35 80 13

10. 20 45 30 50 25 13

11. 40 30 65 10 25 14

12. 50 75 85 50 10 6

13. 65 75 50 5 50 9

14. 90 30 50 35 95 10

15. 60 80 10 75 50 6

16. 25 85 25 50 20 4

17. 10 30 90 50 35 13

18. 75 10 85 55 5 10

19. 65 65 20 50 15 16

20. 60 70 60 60 25 9

21. 35 70 30 40 45 6

22. 55 5 90 70 70 13

23. 15 20 60 40 60 10

24. 20 40 75 70 15 9

25. 30 95 25 65 20 7

26. 90 75 30 20 70 2

27. 95 20 65 80 45 15

28. 45 50 85 70 65 4

29. 60 90 70 25 5 14

30. 70 45 65 50 40 9

31. 50 50 65 65 45 7

32. 50 95 15 35 60 5

33. 70 15 90 80 50 9

34. 85 30 20 30 80 2

35. 70 40 45 85 30 2

36. 75 55 80 85 25 4

37. 20 55 25 35 90 4

38. 85 10 5 55 80 15
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39. 5 15 75 35 25 10

40. 75 50 45 60 40 16

41. 65 85 35 90 10 3

42. 25 50 20 15 65 12

43. 15 15 50 75 80 3

44. 30 95 30 45 75 14

45. 80 50 85 20 25 5

46. 35 35 60 25 35 8

47. 90 55 50 15 35 5

48. 35 65 95 35 20 7

49. 30 70 60 25 45 15

50. 30 55 50 30 65 9

51. 35 90 70 20 20 6

52. 60 35 95 10 15 9

53. 25 60 35 90 25 10

54. 10 5 10 45 20 6

55. 80 5 15 75 90 14

56. 20 40 80 35 15 5

57. 80 60 95 65 70 4

58. 65 30 75 30 65 15

59. 15 45 55 50 70 6

60. 20 5 55 55 35 1

61. 40 10 75 70 30 3

62. 20 90 65 80 75 10

63. 95 40 40 20 5 4

64. 45 45 75 25 45 11

65. 80 95 50 45 10 14

66. 60 25 50 70 80 6

67. 85 60 45 95 55 9

68. 95 10 70 60 20 12

69. 65 75 25 50 40 15

70. 10 50 35 10 50 10

71. 50 85 85 40 65 8

72. 45 55 10 10 70 1

73. 5 50 95 55 90 3

74. 35 15 35 15 50 15

75. 95 40 75 50 50 4

76. 50 40 95 65 5 4

77. 40 80 50 95 5 14
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78. 55 50 70 50 15 9

79. 90 45 55 30 65 1

80. 20 60 95 95 50 15

81. 85 50 95 95 90 11

82. 5 55 55 25 95 10

83. 15 15 40 20 15 9

84. 80 50 50 50 35 2

85. 65 90 65 50 35 3

86. 75 70 85 20 30 7

87. 65 10 85 10 50 1

88. 75 10 85 15 5 10

89. 50 25 15 20 30 6

90. 15 30 60 10 75 7

91. 30 15 45 25 25 11

92. 75 95 5 95 30 10

93. 55 15 70 30 40 12

94. 10 15 50 30 65 5

95. 5 50 50 60 25 7

96. 75 5 75 65 90 15

97. 80 25 90 90 50 6

98. 60 15 10 75 80 9

99. 95 15 95 95 5 7

100. 55 30 70 85 90 5

Execution
# Read the data file

x <- read.csv("hybridHclust_case_study_input.csv")

# calculate the mutual clusters

mc <- mutualCluster(x)

# Calculate the Hybrid Hierarchical Cluster

hyb <- hybridHclust(x, mc)

# Plot the Hybrid Clustering Dendogram

plot(hyb)
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Output
The clustering function shows a dendogram of the clustered data, with that it is possible to decide how many clusters
we want to use. The red line in the figure below demonstrates this choice for analysis, is this case the clusters below
the red line will be considered.

Figure 2: Hybrid clustering dendogram of the above case study data

Analysis
Because the case study has a multi-dimensional data it’s harder to visualize what the clusters have in common.
However, when a good number of clusters are chosen, it is possible to see their similarities and better analyze the
results.
Look at the cluster formed by 50, 59, 23, 94, 43, 82, 90, 5, 4, 42, 70, 72 and 37. The cluster has mid to high values of
neuroticism [50, 95], mid to low values of openness [5, 50], and low to mid high values of conscientiousness [15,
65].

O C E A N I

4. 20 65 20 15 50 5

5. 50 25 65 10 95 13

23. 15 20 60 40 60 10

37. 20 55 25 35 90 4

42. 25 50 20 15 65 12

43. 15 15 50 75 80 3

50. 30 55 50 30 65 9

59. 15 45 55 50 70 6

70. 10 50 35 10 50 10

72. 45 55 10 10 70 1

82. 5 55 55 25 95 10

90. 15 30 60 10 75 7

http://en.wikibooks.org/w/index.php?title=File:Hybrid_clustering_case_study_dendogram.png
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94. 10 15 50 30 65 5

Another interesting cluster is the one formed by 74, 89, 83, 91, 54, 10, 95 and 1. The cluster has mid to low values of
openness [5, 50], mid to low values of conscientiousness [5, 50], mid to low values of extraversion [10, 50], and mid
to low values of neuroticism [15, 50].

O C E A N I

1. 10 30 40 55 45 12

10. 20 45 30 50 25 13

54. 10 5 10 45 20 6

74. 35 15 35 15 50 15

83. 15 15 40 20 15 9

89. 50 25 15 20 30 6

91. 30 15 45 25 25 11

95. 5 50 50 60 25 7

If the values range in a cluster was an indication of a risk behavior or pathology, the psychologist would be able to
pay more attention to anyone in that group for example. Or with more accurate socio-economic variables it would be
possible to see correlations between the big five factors and other socio-economic factors.
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Expectation Maximization (EM)
This chapter intends to give an overview of the technique Expectation Maximization (EM), proposed by (although
the technique was informally proposed in literature, as suggested by the author) in the context of R-Project
environment. The first section gives an introduction of representative clustering and mixture models. The algorithm
details and a case study will be presented on the second section.
The R package that will be used is the MCLUST-v3.3.2 developed by Chris Fraley and Adrian Raftery, available in
CRAN repository. The MCLUST tool is a software that includes the following features: normal mixture modeling
(EM); EM initialization through an hierarchical clustering approach; estimate the number of clusters based on the
Bayesian Information Criteria (BIC); and displays, including uncertainty plots and dimension projections.
The information sources of this document were divided in two groups: (i) manual and guides of R and MCLUST,
which includes the technical report that is the base reference of this project and gives an overview of MCLUST with
several examples and (ii) theoretical papers, surveys and books found in literature.

Introduction
Clustering consists in identifying groups of entities that have characteristics in common and are cohesive and
separated from each other. Interest in clustering has increased due to several applications in distinct knowledge
areas. Highlighting the search for grouping of customers and products in massive datasets, document analysis in
Web usage data, gene expression from microarrays and image analysis where clustering is used for segmentation.
The clustering methods can be grouped in classes. One widely used involves hierarchical clustering, which consider,
initially, that each points represent one group and at each iteration it merged two groups chosen to optimize some
criterion. A popular criteria, proposed by, include the sum of within group sum of squares and is given by the
shortest distance between the groups (single-link method).
Another typical class is based on iterative relocation, which data are moved from one group to another at each
iteration. Also called as representative clustering due the use of a model, created to each cluster, that summarize the
characteristics of the group elements. The most popular method in this class is the K-Means, proposed by, which is
based on iterative relocation with the sum of squares criterion.
In statistic and optimization problems is usual to maximize or minimize a function, and its variables in a specific
space. As these optimization problems may assume several different types, each one with its own characteristics,
many techniques have been developed to solve them. This techniques are very important in data mining and
knowledge discovery area as it can be used as basis for most complex and powerful methods.
One of these techniques is the Maximum Likelihood and its main goal is to adjust a statistic model with a specific
data set, estimating its unknown parameters so the function that can describe all the parameters in the dataset. In
other words, the method will adjust some variables of a statistical model from a dataset or a known distribution, so
the model can “describe” each data sample and estimate others.
It was realized that clustering can be based on probability models to cover the missing values. This provides insights
into when the data should conform to the model and has led to the development of new clustering methods such as
Expectation Maximization (EM) that is based on the principle of Maximum Likelihood of unobserved variables in
finite mixture models.

http://en.wikipedia.org/wiki/Maximum_likelihood
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Technique to be discussed
The EM algorithm is an unsupervised clustering method, that is, don't require a training phase, based on mixture
models. It follows an iterative approach, sub-optimal, which tries to find the parameters of the probability
distribution that has the maximum likelihood of its attributes.
In general lines, the algorithm's input are the data set (x), the total number of clusters (M), the accepted error to
converge (e) and the maximum number of iterations. For each iteration, first is executed the E-Step (E-xpectation),
that estimates the probability of each point belongs to each cluster, followed by the M-step (M-aximization), that
re-estimate the parameter vector of the probability distribution of each class. The algorithm finishes when the
distribution parameters converges or reach the maximum number of iterations.

Algorithm
Initialization
Each class j, of M classes (or clusters), is constituted by a parameter vector (θ), composed by the mean (μj) and by
the covariance matrix ( ), which represents the features of the Gaussian probability distribution (Normal) used to
characterize the observed and unobserved entities of the data set x.

On the initial instant (t = 0) the implementation can generate randomly the initial values of mean (μj) and of
covariance matrix ( ). The EM algorithm aims to approximate the parameter vector (θ) of the real distribution.
Another alternative offered by MCLUST is to initialize EM with the clusters obtained by a hierarchical clustering
technique.
E-Step
This step is responsible to estimate the probability of each element belong to each cluster ( ). Each
element is composed by an attribute vector ( ). The relevance degree of the points of each cluster is given by the
likelihood of each element attribute in comparison with the attributes of the other elements of cluster .

M-Step
This step is responsible to estimate the parameters of the probability distribution of each class for the next step. First
is computed the mean (μj) of class j obtained through the mean of all points in function of the relevance degree of
each point.

To compute the covariance matrix for the next iteration is applied the Bayes Theorem, which implies that
, based on the conditional probabilities of the class occurrence.

The probability of occurrence of each class is computed through the mean of probabilities ( ) in function of the
relevance degree of each point from the class.

The attributes represents the parameter vector θ that characterize the probability distribution of each class that will
be used in the next algorithm iteration.
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Convergence Test
After each iteration is performed a convergence test which verifies if the difference of the attributes vector of an
iteration to the previous iteration is smaller than an acceptable error tolerance, given by parameter. Some
implementations uses the difference between the averages of class distribution as the convergence criterion.

if(||θ(t + 1) − θ(t)|| < ǫ)
   stop
else
   call E-Step
end

The algorithm has the property of, at each step, estimate a new attribute vector that has the maximum local
likelihood, not necessarily the global, what reduces the its complexity. However, depending on the dispersion of the
data and on its volume, the algorithm can stop due the maximum number of iterations defined.

Implementation

Packages
The expectation-maximization in algorithm in R, proposed in, will use the package mclust. This package contains
crucial methods for the execution of the clustering algorithm, including functions for the E-step and M-step
calculation. The package manual explains all of its functions, including simple examples. This manual can be found
in.
The mclust package also provides various models for EM and also hierarchical clustering(HC), which is defined by
the covariance structures. These models are presented in Table 1 and are explained in detail in.

Table 1: Covariance matrix structures.

identifier Model HC EM Distribution Volume Shape Orientation

E * * (univariate) equal

V * * (univariate) variable

EII * * Spherical equal equal NA

VII * * Spherical variable equal NA

EEI * Diagonal equal equal coordinate axes

VEI * Diagonal variable equal coordinate axes

EVI * Diagonal equal variable coordinate axes

VVI * Diagonal variable variable coordinate axes

EEE * * Ellipsoidal equal equal equal

EEV * Ellipsoidal equal equal variable

VEV * Ellipsoidal variable equal variable

VVV * * Ellipsoidal variable variable variable
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Executing the Algorithm
The function “em” can be used for the expectation-maximization method, as it implements the method for
parameterized Gaussian Mixture Models (GMM), starting in the E-step. This function uses the following parameters:
• model-name: the name of the model used;
• data: all the collected data, which must be all numerical. If the data format is represent by a matrix, the rows will

represent the samples (observations) and the columns the variables;
• parameters: model parameters, which can assume the following values: pro, mean, variance and Vinv,

corresponding to the mixture proportion for the components of mixture, mean of each component, parameters
variance and the estimate hypervolume of the data region, respectively.

• other: less relevant parameters which wont be described here. More details can be found in the package manual.
After the execution, the function will return:
• model-name: the name of the model;
• z: a matrix whose the element in position [I,k] presents the conditional probability of the ith sample belongs to the

kth mixture component;
• parameters: same as the input;
• others: other metrics which wont be discussed here. More details can be found in the package manual.

A simple example
In order to demonstrate how to use the R to execute the expectation-Maximization method, the following algorithm
presents a simple example for a test dataset. This example can also be found in the package manual.

> modelName = ``EEE''

> data = iris[,-5]

> z = unmap(iris[,5])

> msEst <- mstep(modelName, data, z)

> names(msEst)

> modelName = msEst$modelName

> parameters = msEst$parameters

> em(modelName, data, parameters)

The first line executes the M-step so the parameters used in the em function can be generated. This function is called
mstep and its inputs are model name, as “EEE”, the dataseta the iris dataset and finally, the z matrix, which contains
the conditional probability of each class contains each data sample. This z matrix is generated by the unmap
function.
After the M-step, the algorithm will show (line 2) the attributes of the object returned by this function. The third line
will start the clustering process using some of the result of the M-step method as input.
The clustering method will return the parameters estimated in the process and the conditional probability of each
sample falls in each class. These parameters include mean and variance, and this last one corresponds to the use of
the mclustVariance method.
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View
This section will present some examples of visualization available in MCLUST package. First will be showed a
simple example of the overall process of clustering from the choice of the number of clusters, the initialization and
the partitioning. Then it will be explained a didactical example using two random mixtures in comparison with two
gaussian mixtures.

Basic Example
This is a simple example to show the features offered by MCLUST package. It is applied to the faithful dataset
(included in R project). First the cluster analysis estimates the number of clusters that best represents this data set
and also the covariance structure of the spread points. This is performed through the technique called Bayesian
Information Criterion (BIC) that varies the number of cluster from 1 to 9. The BIC is the value of the maximized
loglikelihood measured with a penalty for the number of parameters in the model. Then it's executed the hierarchical
clustering technique (HC), which doesn't require a initialization phase. The output of the HC, that is, the cluster that
each element belongs, is used to initialize the Expectation-Maximization technique (EM). After the execution of EM
clustering the charts are showed below:

### basic_example.R ###

# usage: R --no-save < basic_example.R

library(mclust)           # load mclust library
x = faithful[,1]          # get the first column of the faithful data 
set
y = faithful[,2]          # get the second column of the faithful data 
set
plot(x,y)                 # plot the spread points before the 
clustering
model <- Mclust(faithful) # estimate the number of cluster (BIC), 
initialize (HC) and clusterize (EM)
data = faithful           # get the data set 
plot(model, faithful)     # plot the clustering results
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Didactical Example
A didactical example is developed to show two distinct scenarios: (a) one that the model doesn't represents the data
and (b) another that the data is conformed to the model. This example intends to show how EM behaves with noised
and clean data sets.
a) Uniform random mixtures

A noised data set is generated through a uniform random function. The points spread are showed in a chart. Then the
clustering analysis is executed with default parameters (i.e. varies cluster from 1 to 9). The clustering tool shows a
warning with a message that the best model occurs at the min or max, in this case is the min that all points are
grouped in a single cluster.

### random_example.R ###
# usage: R --no-save < random_example.R

library(mclust)                  # load mclust library
x1 = runif(20)                   # generate 20 random random numbers 
for x axis (1st class)
y1 = runif(20)                   # generate 20 random random numbers 
for y axis (1st class)
x2 = runif(20)                   # generate 20 random random numbers 
for x axis (2nd class)
y2 = runif(20)                   # generate 20 random random numbers 
for y axis (2nd class)
rx = range(x1,x2)                # get the axis x range
ry = range(y1,y2)                # get the axis y range
plot(x1, y1, xlim=rx, ylim=ry)   # plot the first class points

http://en.wikibooks.org/w/index.php?title=File:Basic_bic.pdf
http://en.wikibooks.org/w/index.php?title=File:Basic_cluster.pdf
http://en.wikibooks.org/w/index.php?title=File:Basic_uncertainty.pdf
http://en.wikibooks.org/w/index.php?title=File:Basic_density.pdf
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points(x2, y2 )                  # plot the second class points
mix = matrix(nrow=40, ncol=2)    # create a dataframe matrix 
mix[,1] = c(x1, x2)              # insert first class points into the 
matrix
mix[,2] = c(y1, y2)              # insert second class points into the 
matrix
mixclust = Mclust(mix)           # initialize EM with hierarchical 
clustering, execute BIC and EM

# Warning messages:
# 1: In summary.mclustBIC(Bic, data, G = G, modelNames = modelNames) :
#    best model occurs at the min or max # of components considered
# 2: In Mclust(mix) : optimal number of clusters occurs at min choice

b) Two gaussian mixtures

This scenario is composed by two well separated data sets generated through a gaussian distribution function
(Normal). The points are showed in the first chart. The EM clustering is applied and the results are also showed in
the graphs below. As we can see, the EM clustering obtain two gaussian models that is in conformed to the data.

### gaussian_example.R ###
# usage: R --no-save < gaussian_example.R

library(mclust)                  # load mclust library
x1 = rnorm(n=20, mean=1, sd=1)   # get 20 normal distributed points for
 x axis with mean=1 and std=1 (1st class)

http://en.wikibooks.org/w/index.php?title=File:Points_random.pdf


Expectation Maximization (EM) 102

y1 = rnorm(n=20, mean=1, sd=1)   # get 20 normal distributed points for
 x axis with mean=1 and std=1 (2nd class)
x2 = rnorm(n=20, mean=5, sd=1)   # get 20 normal distributed points for
 x axis with mean=5 and std=1 (1st class)
y2 = rnorm(n=20, mean=5, sd=1)   # get 20 normal distributed points for
 x axis with mean=5 and std=1 (2nd class)
rx = range(x1,x2)                # get the axis x range
ry = range(y1,y2)                # get the axis y range
plot(x1, y1, xlim=rx, ylim=ry)   # plot the first class points
points(x2, y2)                   # plot the second class points
mix = matrix(nrow=40, ncol=2)    # create a dataframe matrix 
mix[,1] = c(x1, x2)              # insert first class points into the 
matrix
mix[,2] = c(y1, y2)              # insert second class points into the 
matrix
mixclust = Mclust(mix)           # initialize EM with hierarchical 
clustering, execute BIC and EM
plot(mixclust, data = mix)       # plot the two distinct clusters found

 

  

http://en.wikibooks.org/w/index.php?title=File:Gaussian_points.pdf
http://en.wikibooks.org/w/index.php?title=File:Gaussian_bic.pdf
http://en.wikibooks.org/w/index.php?title=File:Gaussian_cluster.pdf
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Case Study

Scenario
The scenario to be analized is composed by a sample data set available in the MCLUST package named "wreath". A
clustering analysis is performed with more details, applied to a scenario composed by 14 point groups, that exceeds
the maximum number of clusters allowed by the default MCLUST parameters. The clustering technique is executed
two times: (i) the first based on the default MCLUST, (ii) with customized parameters.

Input data
The input of the case study is the data set wreath provided by the MCLUST package. This data set consists in a 14
point group showed on the next figure, which can be modeled with Spherical or Ellipsoide that take into account the
orientation of the data due its rotation.

### case_input.R ###
# usage: R --no-save < case_default.R

plot(wreath[,1],wreath[,2])

Execution
The clustering is executed two times. The first one is based on the default parameters given by the MCLUST tool,
that varies the number of cluster from 1 to 9, which is smaller than the necessary to fit the case study data set. The
estimation of the number of clusters is showed in a graphic that varies the number of clusters and compute the
Bayesian Informatin Criterion (BIC) for each value. We can see that the BIC, using the default parameters, is
divergent while is expected find a peak followed by a decrease that indicates the best number of clusters.

### case_default.R ###
# usage: R --no-save < case_default.R

library(mclust)

wreathBIC <- mclustBIC(wreath)
plot(wreathBIC, legendArgs = list(x = "topleft"))
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Then the number of cluster is customized, modified to varies from 1 to 20 as showed below. The BIC technique will
give the best number of clusters, in this case 14 clusters and the coefficient structure that have the properties of this
data set, that is the EEV, which means that the clusters has similar shape, similar volumes but variable orientation.
After executes the BIC method again we can see that 14 clusters, indicated by the peak on the graphic, is the number
of cluster that present the maximum likelihood for this data.

### case_customized.R ###
# usage: R --no-save < case_customized.R

library(mclust)
wreathDefault <- mclustBIC(wreath)
wreathCustomize <- mclustBIC(wreath, G = 1:20, x = wreathDefault)
plot(wreathCustomize, G = 10:20, legendArgs = list(x = "bottomleft"))
summary(wreathCustomize, wreath)

http://en.wikibooks.org/w/index.php?title=File:Default_bic.pdf
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Output
The output of this clustering is analysed is obtained using the method mclust2Dplot depicted in the next figure. It
was used the density visualization. The clusters found are characterized by 14 models wich have the distribution of
an ellipsoides, with different orientation, beein in conformed with the data. The method summary can be executed
later analyse other aspects of the clustering result.

### case_output.R ###
# usage: R --no-save < case_customized.R

library(mclust)
data(wreath)
wreathBIC <- mclustBIC(wreath)
wreathBIC <- mclustBIC(wreath, G = 1:20, x = wreathBIC)
wreathModel <- summary(wreathBIC, data = wreath)
mclust2Dplot(data = wreath, what = "density", identify = TRUE, 
parameters = wreathModel$parameters, z = wreathModel$z)

http://en.wikibooks.org/w/index.php?title=File:Customize_bic.pdf
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Analysis
We can see that the mixture models created to represent the point are in conformation to the data set. On this case,
the groups doesn't have an intersection between them, so all points were classified to the right group. The cluster
orientation allows the method to find a better Ellipsoide to represent those points.
We conclude that the EM clustering technique, despite the dependence of the number of clusters and the
initialization phase, is an efficient method that produces good results for several scenarios of data dispersion. The use
of BIC to estimate the number of clusters and of the hierarchical clustering (HC) (which doesn't depend of the
number of clusters) to initialize the clusters improves the quality of the results.

References
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Dissimilarity Matrix Calculation

Introduction
Dissimilarity may be defined as the distance between two samples under some criterion, in other words, how
different these samples are. Considering the Cartesian Plane, one could say that the euclidean distance between two
points is the measure of their dissimilarity. The Dissimilarity index can also be defined as the percentage of a group
that would have to move to another group so the samples to achieve an even distribution.
The Dissimilarity matrix is a matrix that express the similarity pair to pair between to sets. It's square, and
symmetric. The diagonal members are defined as zero, meaning that zero is the measure of dissimilarity between an
element and itself. Thus, the information the matrix holds can be seen as a triangular matrix. MARCHIORO et al.
(2003) [1] used the matrix of dissimilarity to determine the differences between oat specimens and discover good
generators for the future generations.
The concept of Dissimilarity may be used in a more general way, to determine the pairwise difference between
samples. As an example, this was used by da Silveira and Hanashiro (2009)[2] to study the impact of similarity and
dissimilarity between superior and subordinate in the quality of their relationship. The similarity notion is a key
concept for Clustering, in the way to decide which clusters should be combined or divided when observing sets. An
appropriate metric use is strategic in order to achieve the best clustering, because it directly influences the shape of
clusters. The Dissimilarity Matrix (or Distance matrix) is used in many algorithms of Density-based and Hierarchical
clustering, like LSDBC.
The Dissimilarity Matrix Calculation is used, for example, to find Genetic Dissimilarity among oat genotypes. The
way of arranging the sequences of protein, RNA and DNA to identify regions of similarity that may be a
consequence of relationships between the sequences, in bioinformatics, is defined as sequence alignment. Sequence
alignment is part of genome assembly, where sequences are aligned to find overlaps so that long sequences can be
formed.

Algorithm
The matrix may be calculated by iterating over each element and calculating its dissimilarity to every other element.
Let A be a Dissimilarity Matrix of size NxN, and B a set of N elements. Aij is the dissimilarity between elements Bi
and Bj.

   for i = 0 to N do

       for j = 0 to N do

           A
ij
 = Dissimilarity(B

i
,B

j
)

       end-for

   end-for

where the function Dissimilarity is defined as follows:

Dissimilarity(a,b) =

    0, if a = b

    ApplyDissimilarityCriterion(a,b), otherwise

ApplyDissimilarityCriterion is a function that calculates the dissimilarity between to elements based in the defined
criterion. Here is a list of some criteria:
•• Euclidean Distance
•• Squared Euclidean Distance
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•• Manhattan Distance
•• Maximum Distance
•• Mahalanobis Distance
•• Cosine Similarity

Implementation in R
Cluster Analysis, extended original from Peter Rousseeuw, Anja Struyf and Mia Hubert.
Package: cluster
Version: 1.12.1
Priority: recommended
Depends: R (>= 2.5.0), stats, graphics, utils
Published: 2009-10-06
Author: Martin Maechler, based on S original by Peter Rousseeuw, Anja.Struyf@uia.ua.ac.be and
Mia.Hubert@uia.ua.ac.be, and initial R port by Kurt.Hornik@R-project.org
Maintainer: Martin Maechler <maechler at stat.math.ethz.ch>
License: GPL (>= 2)
Citation: cluster citation info
In views: Cluster, Environmetrics, Multivariate
CRAN checks: cluster results
The package can be downloaded from the CRAN [3] website. It can be installed using the install.packages() function,
directly in R environment. The function daisy is used to calculate the dissimilarity matrix. It can be found in the
cluster package.
The Dissimilarity Object is the representation of the Dissimilarity Matrix. The matrix is symmetric and the diagonal
is not interesting, thus the lower triangle is represented by a vector to save storage space. To generate the
dissimilarity matrix one must use the daisy function as follows:
Usage

daisy(x, metric = c("euclidean", "manhattan", "gower"), stand = FALSE, type = list())
Arguments

•• x:numeric matrix or data frame. The dissimilarities will be computed between the rows of x.
•• metric: character string specifying the metric to be used. The currently available options are "euclidian", which is

the default, "manhattan" and "gower".
•• stand: logical flag: If the value is true, then the measurements in x are standardized before calculating the

dissimilarities.
•• type: list specifying some or all of the types of the variables(columns) in x. The options are: "ordratio" (ratio

scaled variables treated like ordinary variables), "logicalratio" (ratio scaled variables that must be logarithmically
transformed), "asymm" (asymmetric binary variables) and "symm" (symmetric binary variables). Each entry is a
vector containing the names or numbers of the corresponding columns of x.

Return

The function returns a dissimilarity object.
For further information, please refer to the daisy documentation [4].

http://cran.r-project.org/
http://stat.ethz.ch/R-manual/R-patched/library/cluster/html/daisy.html
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Visualization
For the example, we will use the agriculture dataset available in R.
The dissimilarity matrix, using the euclidean metric, can be calculated with the command: daisy(agriculture, metric =
"euclidean").
The result the of calculation will be displayed directly in the screen, and if you wanna reuse it you can simply assign
it to an object: x <- daisy(agriculture, metric = "euclidean").
The object returned by the daisy function is a dissimilarity object, defined earlier in this text.
To visualize the matrix use the next command: as.matrix(x)

> as.matrix(x)

            B        DK         D        GR         E         F       IRL

B    0.000000  5.408327  2.061553 22.339651  9.818350  3.448188 12.747549

DK   5.408327  0.000000  3.405877 22.570113 11.182576  3.512834 13.306014

D    2.061553  3.405877  0.000000 22.661200 10.394710  2.657066 13.080138

GR  22.339651 22.570113 22.661200  0.000000 12.567418 20.100995  9.604166

E    9.818350 11.182576 10.394710 12.567418  0.000000  8.060397  3.140064

F    3.448188  3.512834  2.657066 20.100995  8.060397  0.000000 10.564563

IRL 12.747549 13.306014 13.080138  9.604166  3.140064 10.564563  0.000000

I    5.803447  5.470832  5.423099 17.383325  5.727128  2.773085  7.920859

L    4.275512  2.220360  2.300000 24.035391 12.121056  4.060788 14.569145

NL   1.649242  5.096077  2.435159 20.752349  8.280097  2.202272 11.150785

P   17.236299 17.864490 17.664088  5.162364  7.430343 15.164432  4.601087

UK   2.828427  8.052950  4.850773 21.485344  8.984431  5.303772 12.103718

            I         L        NL         P        UK

B    5.803447  4.275512  1.649242 17.236299  2.828427

DK   5.470832  2.220360  5.096077 17.864490  8.052950

D    5.423099  2.300000  2.435159 17.664088  4.850773

GR  17.383325 24.035391 20.752349  5.162364 21.485344

E    5.727128 12.121056  8.280097  7.430343  8.984431

F    2.773085  4.060788  2.202272 15.164432  5.303772

IRL  7.920859 14.569145 11.150785  4.601087 12.103718

I    0.000000  6.660330  4.204759 12.515990  6.723095

L    6.660330  0.000000  4.669047 19.168985  7.102112

NL   4.204759  4.669047  0.000000 15.670673  3.124100

P   12.515990 19.168985 15.670673  0.000000 16.323296

UK   6.723095  7.102112  3.124100 16.323296  0.000000

To obtain a summary of the data stored in the matrix, you can use: summary(x)

> summary(x)

66 dissimilarities, summarized :

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.

 1.6492  4.3569  7.9869  9.5936 13.2500 24.0350

Metric :  euclidean

Number of objects : 12

You can also use the dissimilarity matrix in the print method to obtain the lower triangle (the one that matters and is
stored) of the matrix:
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> print(x)

Dissimilarities :

            B        DK         D        GR         E         F       IRL

DK   5.408327                                                            

D    2.061553  3.405877                                                  

GR  22.339651 22.570113 22.661200                                        

E    9.818350 11.182576 10.394710 12.567418                              

F    3.448188  3.512834  2.657066 20.100995  8.060397                    

IRL 12.747549 13.306014 13.080138  9.604166  3.140064 10.564563          

I    5.803447  5.470832  5.423099 17.383325  5.727128  2.773085  7.920859

L    4.275512  2.220360  2.300000 24.035391 12.121056  4.060788 14.569145

NL   1.649242  5.096077  2.435159 20.752349  8.280097  2.202272 11.150785

P   17.236299 17.864490 17.664088  5.162364  7.430343 15.164432  4.601087

UK   2.828427  8.052950  4.850773 21.485344  8.984431  5.303772 12.103718

            I         L        NL         P

DK                                         

D                                          

GR                                         

E                                          

F                                          

IRL                                        

I                                          

L    6.660330                              

NL   4.204759  4.669047                    

P   12.515990 19.168985 15.670673          

UK   6.723095  7.102112  3.124100 16.323296

Metric :  euclidean

Number of objects : 12

Case Study
To illustrate the Dissimilarity Matrix technique, a simple case study will be shown.

Scenario
In the context of species enhancement programs, it is desirable to have very heterogeneous generations, so it is
possible to induce the desired characteristics. When trying to induce a giving set of characteristics, it is necessary to
choose a parent specimen that will result in the next generations.
Genetic dissimilarity measures have become the interest of many authors (Santos et al., 1997; Gaur et al., 1978;
Casler,1995) in characterizing and identifying genetic contributions of different species. As dissimilarity measures to
show the genetic variability intensity, the Euclidian distance and the Mahalanobis distance are the most used in plant
genetic enhancement programs. The objective is to choose genetic constitutions that may result in superior
combinations through their progeny.
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Input Data
The data used here was extracted from MARCHIORO et al. (2003). 18 oat genotypes were measured in many
aspects to be later compared. Here we use the measure of days until flowering(DUF) for genotypes subject to
fungicides.

Genotype DUF (days)

UPF 7. 104

UPF 15. 100

UPF 16. 97

UPF 17. 96

UPF 18. 102

UPF 19. 98

UFRGS 7. 95

UFRGS 14. 99

UFRGS 15. 101

UFRGS 16. 101

UFRGS 17. 100

UFRGS 18. 105

UFRGS 19. 92

URS 20. 97

URS 21. 93

IAC 7. 91

OR 2. 97

OR 3. 98

This data is the input for the daisy function to calculate the dissimilarity matrix. From the results it is possible to
define the best parent to achieve very heterogeneous future generations.
Data construction in R:

DUF <- c(104,100, 97, 96, 102, 98, 95, 99, 101, 101, 100, 105, 92, 

97, 93, 91, 97, 98)

Genotype <- c("UPF 7", "UPF 15", "UPF 16", "UPF 17", "UPF 18", "UPF 

19", "UFRGS 7", "UFRGS 14", "UFRGS 15", "UFRGS 16", "UFRGS 17", "UFRGS 

18", "UFRGS 19", "URS 20", "URS 21", "IAC 7", "OR 2", "OR 3")

myframe <- data.frame(DUF)

rownames(myframe) <- Genotype
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Execution
To determine the dissimilarity matrix of the data selected in this case study, use the command below:

dis_mat <- daisy(myframe, metric = "euclidean", stand = FALSE)

Output
The dissimilarity matrix stored in dis_mat can be visualized as showed below:
> as.matrix(dis_mat)

         UPF 7 UPF 15 UPF 16 UPF 17 UPF 18 UPF 19 UFRGS 7 UFRGS 14 UFRGS 15 UFRGS 16 UFRGS 17 UFRGS 18 UFRGS 19 URS 20 URS 21 IAC 7 OR 2 OR 3

UPF 7        0      4      7      8      2      6       9        5        3        3        4        1       12      7     11    13    7    6

UPF 15       4      0      3      4      2      2       5        1        1        1        0        5        8      3      7     9    3    2

UPF 16       7      3      0      1      5      1       2        2        4        4        3        8        5      0      4     6    0    1

UPF 17       8      4      1      0      6      2       1        3        5        5        4        9        4      1      3     5    1    2

UPF 18       2      2      5      6      0      4       7        3        1        1        2        3       10      5      9    11    5    4

UPF 19       6      2      1      2      4      0       3        1        3        3        2        7        6      1      5     7    1    0

UFRGS 7      9      5      2      1      7      3       0        4        6        6        5       10        3      2      2     4    2    3

UFRGS 14     5      1      2      3      3      1       4        0        2        2        1        6        7      2      6     8    2    1

UFRGS 15     3      1      4      5      1      3       6        2        0        0        1        4        9      4      8    10    4    3

UFRGS 16     3      1      4      5      1      3       6        2        0        0        1        4        9      4      8    10    4    3

UFRGS 17     4      0      3      4      2      2       5        1        1        1        0        5        8      3      7     9    3    2

UFRGS 18     1      5      8      9      3      7      10        6        4        4        5        0       13      8     12    14    8    7

UFRGS 19    12      8      5      4     10      6       3        7        9        9        8       13        0      5      1     1    5    6

URS 20       7      3      0      1      5      1       2        2        4        4        3        8        5      0      4     6    0    1

URS 21      11      7      4      3      9      5       2        6        8        8        7       12        1      4      0     2    4    5

IAC 7       13      9      6      5     11      7       4        8       10        10       9       14        1      6      2     0    6    7

OR 2         7      3      0      1      5      1       2        2        4        4        3        8        5      0      4     6    0    1

OR 3         6      2      1      2      4      0       3        1        3        3        2        7        6      1      5     7    1    0

Analysis
The output shows that there is a high dissimilarity between the genotypes. This is in agreement with the results in
MARCHIORO et al. (2003). Cross breeding these genotypes, it is possible to achieve high dissimilarity in the next
generations, which is very good, since the genetic enhancement program can have more genetic combinations to
explore.
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Hierarchical Clustering

Introduction
A hierarchical clustering method consists into grouping data objects into a tree of clusters. There are two main types
of techniques: a bottom-up and a top-down approach. The first one starts with small clusters composed by a single
object and, at each step, merge the current clusters into greater ones, successively, until reach a cluster composed by
all data objects. The second approach use the same logic, but to the opposite direction, starting with the greatest
cluster, composed by all objects, and split it successively into smaller clusters until reach the singleton groups.
Besides the strategies, other important issue is the metrics used to build (merge or split) clusters. Such metrics can be
different distance measures, described next section.

Inter-cluster Metrics
Four widely used measures for distance between clusters are as follows. Where p and p' are two different data object
points, mi is the mean for cluster Ci, ni is the number of objects in cluster Ci, and |p - p'| is the distance between p and
p'.

Minimum distance: 
Maximum distance: 
Mean distance: 

Average distance: 

Algorithms
One algorithm that implements the bottom-up approach is AGNES (AGglomerative NESting). The main idea of
AGNES is, at its first step, create clusters composed by one single data object, and then, using a specified metric
(such the ones mentioned previous section), merge such clusters into greater ones. The second step is repeated
iteratively until only one cluster is obtained, composed by all data objects. Another example of algorithm
implementing this approach is Cure, where instead dealing all the time with the whole set of entities, the clusters are
shrank to its centers.
DIANA (DIvisive ANAlysis) is an example of an algorithm that implements top-down approach, starting with a
single big cluster with all elements and iteratively spliting the current groups into smaller ones. As happens with
AGNES and Cure, is necessary to define some metric to compute the distance inter-clusters, in order to decide how
(where) they have to be splitted.
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Implementation
In order to use Hierarchical Clustering algorithms in R, one must install cluster package. This package includes a
function that performs the AGNES process and the DIANA process, according to different algorithms.

AGNES Function
The AGNES function provided by cluster package, might be used as follow:

agnes(x, diss = inherits(x, "dist"), metric = "euclidean", stand
= FALSE, method = "average", par.method, keep.diss = n < 100,
keep.data = !diss)

where the arguments are:
• x: data matrix or data frame (all variables must be numeric and missing values are allowed), or dissimilarity

matrix (missing values aren't allowed), depending on the value of the diss argument.
• diss: logical flag. if TRUE (default for dist or dissimilarity objects), then x is assumed to be a dissimilarity matrix.

If FALSE, then x is treated as a matrix of observations by variables.
• metric: character string specifying the metric to be used for calculating dissimilarities between observations. The

currently available options are euclidean and manhattan. Euclidean distances are root sum-of-squares of
differences, and manhattan distances are the sum of absolute differences. If x is already a dissimilarity matrix,
then this argument will be ignored.

• stand: logical flag: if TRUE, then the measurements in x are standardized before calculating the dissimilarities.
Measurements are standardized for each variable (column), by subtracting the variable’s mean value and dividing
by the variable’s mean absolute deviation. If x is already a dissimilarity matrix, then this argument will be
ignored.

• method: character string defining the clustering method. The six methods implemented are average ([unweighted
pair-]group average method, UPGMA), single (single linkage), complete (complete linkage), ward
(Ward’smethod), weighted (weighted average linkage) and its generalization flexible which uses (a constant
version of) the Lance-Williams formula and the par.method argument. Default is average.

• par.method: if method = flexible, numeric vector of length 1, 3, or 4.
• keep.diss, keep.data: Logicals indicating if the dissimilarities and/or input data x should be kept in the result.

Setting these to FALSE can give much smaller results and hence even save memory allocation time.
AGNES algorithm has the following features:
•• yields the agglomerative coeficient which measures the amount of clustering structure found
•• provides the hierarchical tree and the banner, a novel graphical display
The function AGNES returns a agnes object representing the clustering. This agnes object is a list with the
components listed below:
• order: a vector giving a permutation of the original observations to allow for plotting
• order.lab: a vector similar to order, but containing observation labels instead of observation numbers. This

component is only available if the original observations were labelled.
• height: a vector with the distances between merging clusters at the successive stages.
• ac: the agglomerative coefficient, measuring the clustering structure of the dataset.
• merge: an (n-1) by 2 matrix, where n is the number of observations.
• diss: an object of class dissimilarity, representing the total dissimilarity matrix of the dataset.
• data: a matrix containing the original or standardized measurements. This is available only if the input structure

were different from a dissimilarity matrix.
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Visualization
To visualize the AGNES function result might be used the funcionts: print and plot.
The first function simply print the components of object agnes and the second one plot the object, creating a chart
that represents the data.
Here, it is a example of use function plot:

plot(x, ask = FALSE, which.plots = NULL, main = NULL,sub =
paste("Agglomerative Coefficient = ",round(x$ac, digits = 2)),adj
= 0, nmax.lab = 35, max.strlen = 5, xax.pretty = TRUE, ...)

The arguments used are:
•• x: object agnes
•• ask: If TRUE and which.plots = NULL, plot.agnes operates an interactive mode, via menu.
•• which.plots: integer vector or NULL (default), the latter producing both plots
•• main, sub: main and sub title for the plot, each with a convenient default.
•• adj: For label adjustment in bannerplot
•• nmax.lab: nteger indicating the number of labels which is considered too large for singlename labelling the

banner plot.
•• max.strlen: positive integer giving the length to which strings are truncated in banner plot labeling.
•• xax.prety: positive integer giving the length to which strings are truncated in banner plot labeling.
•• ...: graphical parameters.
And here, it is the example of use function print:
print(x, ...)
The arguments are:
•• x: object agnes
•• ...: potential further arguments (require by generic functin print)

DIANA Function
The DIANA function provided by cluster package, might be used as follow:

diana(x, diss = inherits(x, "dist"), metric = "euclidean", stand
= FALSE, keep.diss = n < 100, keep.data = !diss)

where the arguments are:
• x: data matrix or data frame (all variables must be numeric and missing values are allowed), or dissimilarity

matrix (missing values aren't allowed), depending on the value of the diss argument.
• diss: logical flag. if TRUE (default for dist or dissimilarity objects), then x is assumed to be a dissimilarity matrix.

If FALSE, then x is treated as a matrix of observations by variables.
• metric: character string specifying the metric to be used for calculating dissimilarities between observations. The

currently available options are euclidean and manhattan. Euclidean distances are root sum-of-squares of
differences, and manhattan distances are the sum of absolute differences. If x is already a dissimilarity matrix,
then this argument will be ignored.

• stand: logical; if true, the measurements in x are standardized before calculating the dissimilarities.
Measurements are standardized for each variable (column), by subtracting the variable’s mean value and dividing
by the variable’s mean absolute deviation. If x is already a dissimilarity matrix, then this argument will be
ignored.

• keep.diss, keep.data: Logicals indicating if the dissimilarities and/or input data x should be kept in the
result. Setting these to FALSE can give much smaller results and hence even save memory allocation time.
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DIANA algorithm is probably unique in computing a divisive hierarchy, whereas most other software for
hierarchical clustering is ag glomerative. It has the same features as AGNES functions as follows:
•• yields the agglomerative coeficient which measures the amount of clustering structure found
•• provides the hierarchical tree and the banner, a novel graphical display
The function DIANA returns a diana object representing the clustering. This agnes object is a list with the
components listed below:
• order: a vector giving a permutation of the original observations to allow for plotting
• order.lab: a vector similar to order, but containing observation labels instead of observation numbers. This

component is only available if the original observations were labelled.
• heigh: a vector with the distances between merging clusters at the successive stages.
• dc: the divisive coefficient, measuring the clustering structure of the dataset.
• merge: an (n-1) by 2 matrix, where n is the number of observations.
• diss: an object of class dissimilarity, representing the total dissimilarity matrix of the dataset.
• data: a matrix containing the original or standardized measurements. This is available only if the input structure

were different from a dissimilarity matrix.

Visualization
To visualize the DIANA function result might be used the funcionts: print and plot.
The first function simply print the components of object agnes and the second one plot the object, creating a chart
that represents the data.
Here, it is a example of use function plot:

plot(x, ask = FALSE, which.plots = NULL, main = NULL, sub =
paste("Divisive Coefficient = ", round(x$dc, digits = 2)), adj =
0, nmax.lab = 35, max.strlen = 5, xax.pretty = TRUE, ...)

The arguments used are:
• x: object diana
• ask: If TRUE and which.plots = NULL, plot.diana operates an interactive mode, via menu.
• which.plots: integer vector or NULL (default), the latter producing both plots
• main, sub: main and sub title for the plot, each with a convenient default.
• adj: For label adjustment in bannerplot
• nmax.lab: nteger indicating the number of labels which is considered too large for singlename labelling the

banner plot.
• max.strlen: positive integer giving the length to which strings are truncated in banner plot labeling.
• xax.prety: positive integer giving the length to which strings are truncated in banner plot labeling.
• ...: graphical parameters.
And here, it is the example of use function print:

print(x, ...)

The arguments are:
• x: object diana
• ...: potential further arguments (require by generic functin print)
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Use Case
In this section it is illustrate a example of using hierarchical clustering in some Italian cities. In the example below, it
is used mean distance, or single-linkage method.

Scenario
Given the distances in kilometers between Italian cities, the object is to group them into clusters in a agglomerative
way. For examples in R is used the function agnes.

Input Data
The input data is a table containing the numeric values of distances between cities in Italy. The table consists of six
columns (and rows), representing Italian cities. Each cell has a numeric value representing the distance in kilometers
between them. The table can be loaded from a spreadsheet or from a text file.
Figure 1 illustres the cities used in this example.

Figure 1

Input distance matrix

BA FI MI VO RM TO

BA 0 662 877 255 412 996

FI 662 0 295 468 268 400

MI 877 295 0 754 564 138

VO 255 468 754 0 219 869

RM 412 268 564 219 0 669

TO 996 400 138 869 669 0

http://en.wikibooks.org/w/index.php?title=File%3AHierarchical_Clustering_Italy.jpg
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Execution
The function agnes can be used to define the groups of countries as follow:

# import data

x <- read.table("data.txt")

# run AGNES

ag <- agnes (x, false, metric="euclidean", false, method ="single")

 

# print components of ag

print(ag)

# plot clusters

plot(ag, ask = FALSE, which.plots = NULL)

The value of the second parameter of agnes was FALSE, because x was treated as a matrix of observations by
variables. The fourth parameter also is FALSE because isn't necessary standardizing each column.

Output
The result of printing the components of the class agnes returned by the function application is shown below:

Call:    agnes(x = x, diss = FALSE, metric = "euclidean", stand = FALSE,      method = "single") 

Agglomerative coefficient:  0.3370960 

Order of objects:

[1] BA VO RM FI MI TO

Height (summary):

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  295.8   486.0   486.5   517.6   642.6   677.0 

Available components:

[1] "order"     "height"    "ac"        "merge"     "diss"      "call"     

[7] "method"    "order.lab" "data"

The result of plotting the class returned by the function application it is shown below:
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Dendograma

Analysis
The algorithm always cluster the nearest pair of cities so, in this case, the " neighborhood " cities are clusterized first.
In single link clustering the rule is that the distance from the compound object to another object is equal to the
shortest distance from any member of the cluster to the outside object
However, there are a few weaknesses in agglomerative clustering methods:
• they do not scale well: time complexity of at least O( ), where n is the number of total objects;
•• they can never undo what was done previously.
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Density-Based Clustering
Clustering techniques have an important role in class identification of records on a database, therefore it’s been
established as one of the main topics of research in data mining. Spatial clustering techniques are a subset of
clustering techniques applied on databases whose records have attributes intrinsically related to some spatial
semantics. Most of the traditional clustering techniques described in the previous chapters can be applied to spatial
databases. However, when applied to tasks like class identification on a spatial context, the traditional techniques
might be unable to achieve good results, e.g. elements in the same cluster might not share enough similarity or the
performance may be prohibitively poor.
The class identification task assisted by spatial clustering algorithms has a wide range of applications as finding
relevant information on increasingly large spatial databases have recently become a highly demanded task. Examples
include geographic data from satellite images, medical x-ray image processing or pattern recognition in machine
learning samples.
Although there have been proposed an extensive number of techniques for clustering space-related data, many of the
traditional clustering algorithm specified by them suffer from a number of drawbacks. Firstly, techniques based on
k-partitioning such as those based on k-means are restricted to clusters structured on a convex-shaped fashion. Many
databases have clusters with a broad variety of shapes (Figure 1), hence the traditional k-partitioning algorithms will
fail to produce satisfactory results. Secondly, most techniques require previous knowledge of the database (domain
knowledge) to determine the best input parameters. For example, k-means takes as input the number of expected
clusters, k, which must be previously known for whichever database it’s applied on. In many real-life databases there
is not an a priori domain knowledge and therefore choosing parameters values based on guesses will probably lead to
incomplete and undesirable results. Finally, most techniques are not scalable, which means they can not be used for
large databases, such as those made up by hundreds of thousands of elements. Although most techniques derives
algorithms belonging to a polynomial run time complexity class, the cost can become prohibitively large when they
are applied on huge databases, e.g. millions or billions of elements.
The restrictions mentioned above can be overcome by using a new approach, which is based on density for deciding
which clusters each element will be in. The next session will introduce this new approach, DBSCAN, which stands
for density-based algorithm for discovering clusters in large spatial databases with noise.

DBSCAN: Density Based Spatial Clustering of Applications with Noise
The idea behind constructing clusters based on the density properties of the database is derived from a human natural
clustering approach. By looking at the two-dimensional database showed in figure 1, one can almost immediately
identify three clusters along with several points of noise. The clusters and consequently the classes are easily and
readily identifiable because they have an increased density with respect to the points they possess. On the other hand,
the single points scattered around the database are outliers, which means they do not belong to any clusters as a
result of being in an area with relatively low concentration.
Furthermore, as will be explained in the following sections, the DBSCAN algorithm requires at most two
parameters: a density metric and the minimum size of a cluster. As a result, estimating the number of clusters a priori
is not a need, as opposed to other techniques, namely k-means. Finally, as will be demonstrated later, the DBSCAN
is efficient even when applied on large databases.
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Important Concepts
Prior to describing the DBSCAN algorithm, some concepts must be explained to its fully understanding. The
elements of the database can be classified in two different types: the border points, the points located on the
extremities of the cluster, and the core points, which are located on its inner region. A neighborhood of a point p is a
set of all points that have a distance measure less than a predetermined value, called Eps. Therefore, the
neighborhood size of the core points is generally bigger than that of the border points. A point p is directly
density-reachable from another point q if it belongs to the neighborhood of q and q's neighborhood size is greater
than a given constant MinPts. By deriving canonically the previous concept, one can define a generic
density-reachability: a point p is density-reachable from q if there exists a chain of points p1,..., pn, where p1 = q, pn =
p, and pi+1 is directly density-reachable from pi. The former concepts are then combined to the definition of a cluster
D:
• q,p : if q D and if q is density-reachable from p and p's neighborhood is greater than the MinPts threshold,

then p belongs to D.
• q,p : if q D and p D then there must be a point t such that q and p are directly reachable from t.
According to the above definition, there might be some points not belonging to any of the generated clusters, those
points are outliers (noise). In other words, a cluster D is formed by a set of points that respects a certain degree of
concentration, which is set by the MinPts and Eps constraints. By adjusting those values, one can find clusters of
varying shapes and densities.
In other words, a cluster D is formed by a set of points that respects a certain degree of concentration, which is set by
the MinPts and Eps constraints. By adjusting those values, one can and clusters of varying shapes and densities.

Algorithm
The DBSCAN algorithm (Algorithm 1) starts by randomly selecting an element P from the database. If P is not a
core point, i.e. P has fewer than MinPts neighbors, it will be marked as noise. Otherwise it will be marked as being in
the current cluster and the ExpandCluster (Algorithm 2) function will be called. Its purpose is to find all points that
are density-reachable from P and are currently being marked as unclassified or noise. Despite being a recursive
function, ExpandCluster is implemented without using recursion explicitly. The recursive behaviour is accomplished
by using a set whose size varies as new density-reachable points are found. The algorithm ends when all points have
been properly classified.
Finally, after identifying all clusters, one might wonder that a border point might belong to two clusters at the same
time. For this matter, the currently implement algorithm will consider the ambiguous points as being part of the
cluster which aggregated them firstly.

DBSCAN on R
R is a programming language and software environment for statistical computing. Besides being an widely used tool
for statistical analysis, R aggregates several data mining techniques as well. Therefore it has become an major tool
for simple tasks aiming to discover knowledge on databases. R's source code is freely available under the GNU
General Public License and has been ported for several platforms other than Unix varieties, like Windows and
MacOS. Although R uses primarily a command line interface, several GUIs are available, which increases its
user-friendability. The DBSCAN technique is available on R's fpc package, by Christian Hennig, which implements
clustering tasks for fixed point clusters. The DBSCAN implementation offers high-configurability, as it allows
choosing several parameters and options values. Moreover, fpc's DBSCAN has a visualization interface, which make
it possible to visualize the clustering process iteratively.
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Installation
The fpc package can be installed by using the following command on R's command-line:

install.packages("fpc", dependencies = TRUE)

The above command shall recursivelly download and install all packages that fpc depend to along with fpc itself.

Use
To start using the fpc package, the following command must be invoked:

library('fpc')

DBSCAN Procedure
The fpc package allows the user to use the following procedure for applying dbscan technique directly:

dbscan(data, eps, MinPts, scale, method, seeds, showplot, countmode)

Parameters

The DBSCAN procedure takes the following parameters:
•• data: The data that will be clustered. It can be a data matrix, a data.frame, dissimilarity matrix or dist-object.
•• eps: Reachability distance (discussed before).
•• MinPts: Reachability minimum number of points (discussed before).
•• scale: Used for scaling the data.
•• method: Confifigures memory usage by constraining performance, there are three options:

•• "raw": treats data as raw data and avoids calculating a distance matrix (saves memory but may be slow).
•• "dist": treats data as distance matrix (relatively fast but memory expensive).
•• "hybrid": expects also raw data, but calculates partial distance matrices (very fast with moderate memory

requirements.
•• seeds: Configuration regarding to the inclusion of the isseed-vector in the dbscan-object, can be TRUE or FALSE.
•• showplot: Plotting configuration:

•• 0: no plot
•• 1: plot per iteration
•• 2: plot per subiteration

•• countmode: NULL or vector of point numbers for reporting progress.
The first three parameters are, by far, the most important ones: data is the input data used for clustering; eps and
MinPts variables retains the same meaning as before, that is, they are the minimum distance between elements and
the necessary quantity of points to form a cluster respectivelly. The parameter showplot is related to the visualization
of the results. Parameter method impacts directly the efficiency of the algorithm and can be used for calibrating
memory-performance tradeoff on memory-constrained environments.



Density-Based Clustering 123

Example
The example in this section will illustrate the fpc's DBSCAN usage on the database depicted in figure 1. It will also
show the clustering mechanism as a iterative visualization process. Firstly, the data to be clustered must be created:
x <- matrix(scan("file.dat",1926), nrow=1926, ncol=2, byrow=TRUE); # Read 1926 points on file "file.dat".

par(bg="grey40");                                                   # Set background to gray.

plot(x);                                                           # Plot original database.

d <- dbscan(x,10,showplot = 2);                                    # Calls DBSCAN routine (eps = 10 and MinPts is set to its default, which is 5).

d;                                                                 # Shows DBSCAN result.

# Notice that setting showplot to 2 will make dbscan show the result iteratively by its sub-iterations.

Output

The DBSCAN's output shows information about the clusters that were just created:

dbscan Pts=1926 MinPts=5 eps=20

       0 1 2  3 4   5 6   7 8   9 10 11 12 13 14 15 16 17 18 19

seed   0 8 8 12 8 844 8 312 8 616  8 18  8  8 10 10  8  8 12  8

border 4 0 0  0 0   0 0   0 0   0  0  0  0  0  0  0  0  0  0  0

total  4 8 8 12 8 844 8 312 8 616  8 18  8  8 10 10  8  8 12  8

Each cluster is represented by a single column and the rows shows how many of seed (core), border and total points
it has. Notice that the tiny clusters scattered throughout the database are, in fact, formed by more than a single point.
Thus, they are considered valid clusters because the MinPts parameter was not set and its default value is too low.

Visualization

Points that belong to a cluster are delimited by triangles of different colors. All points belonging to the same cluster
are delimited by triangles of the same color. Points that do not belong to any cluster retain the same color as before
and, as will be showed, are usually represented by black circles. Moreover, setting showplot parameter to 2 implies
that on each subiteration of the DBSCAN algorithm, the routine will show the partial clusters on the screen.
Following are five of these moments:
First image shows the points before the DBSCAN routine is called (command plot(x)). The second one shows the
beginning of the clustering algorithm, the first major cluster is being formed in the upper center of the database. The
fifth image shows the 19 clusters which were obtained when the algorithm had ended.

Case Study: Identifying Celestial Entities
The following sections will discuss a common class identification task assisted by DBSCAN and applied on spatial
databases: identification of celestial entities on astronomy.

Scenario
Identifying celestial objects by capturing the radiation they emit is recurring task on astronomy. An astronomical
entity might be itself the source of electromagnetic radiation (i.e. a star) or might reflect it from other sources (i.e. a
planet). Typically, an entity will emit radiation on different wavelengths, which, together, will help identifying its
class: it might be a planet, an star of any kind or age, or even a galaxy or other exotic entity previously unidentified.
The intensity collected from each range of the eletromagnetic spectrum is stored on an individual two-dimensional
grid (e.g. one for ultraviolet and other for gamma rays). Modern research groups on astronomy are capable of
collecting and storing thousands of large-dimension grids, each of them representing a different view (or image)
from the sky and using up to several terabytes of storage space.
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Besides capturing the electromagnetic intensity emitted from an entity at a given range of the spectrum, the sensors
might capture noise caused by the sensors as well as diffuse emission from the atmosphere and the space itself.
Traditionally, a method for eliminating diffuse emission and some of the noise is to constrain the relevant intensity
by a known threshold. For example, the intensity will only be considered relevant when surpassing 5 rms. A
greater problem arises due to the fact that electromagnetc waves at different spectrum ranges will yield different
interference when traversing a medium. This phenomenum is called Rayleigh Scattering and will ultimately cause
the wave to defleect upon being captured by the sensor. Therefore, when considering several images taken from the
same region of space, but from different spectrum ranges, the following steps that must done for correctly identifying
the celestial entities.

Methodology and Execution

Figure 2: The original image. At a wavelength of
4,865 MHz, it shows the center of a galaxy.

Figure 3: Source emissions after pre-processing.

As an example, consider figure 2, which shows an image taken
from the center of a galaxy. This image consists of a pathologic
example of noise on an astronomical picture. Following is the
methodology for extracting the celestial objects on this image.

Step 1: Pre-Processing

Firstly, a pre-processing step must be applied to the removal of
noise and diffuse emission. As stated before, this might be
accomplished by using a threshold. This step it is shown at figure
3, whereas the original image can be viewed at figure 2 and
represents the original image depicting the center of a galaxy. The
threshold was set to 50 which means that only pixels whose
intensity are less than 50 (and consequently darker) are being
considered.

Step 2: DBSCAN Clustering

Secondly, the DBSCAN algorithm can be applied on individual
pixels to link together a complete emission area at the images for
each channel of the electromagnetic spectrum. This is done by
setting the eps parameter to some value that will define the
minimum area required for a source to be considered. The eps
parameter will define the distance metric in terms of pixels. Each
of the generated cluster will define a celestial entity. Figure 4
shows the result of this step with eps and MinPts parameter set to
5.

http://en.wikibooks.org/w/index.php?title=File%3ACenter_of_a_galaxy.PNG
http://en.wikibooks.org/w/index.php?title=File%3APre_Processed_Astronomical_Image.PNG
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Figure 4: Clustering results for MinPts = 5 and eps = 5.

x <- matrix(scan("file.dat",1214), nrow=1214, ncol=2, byrow=TRUE);

dbscan(x,5,showplot = 2);

Results:

dbscan Pts=1214 MinPts=5 eps=5

         0  1  2  3  4 5 6  7 8  9 10 11 12 13 14 15 16

seed     0 28 26 26 26 6 6 18 2 10 18  8 16 16  8 28 20

border 226  0  0  0  0 0 0  0 4  0  0  0  0  0  0  0  0

total  226 28 26 26 26 6 6 18 6 10 18  8 16 16  8 28 20

        17 18 19 20 21 22 23 24 25 26 27 28 29  30 31 32

seed    14 14  8 18  6  6  6 14  6  6  6 14  8 112  6 18

border   0  0  0  0  0  0  0  0  0  0  0  0  0   0  0  0

total   14 14  8 18  6  6  6 14  6  6  6 14  8 112  6 18

        33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

seed     6 20 20 20 16 10  6  6  8 14  8 10 14 10  6 36

border   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2

total    6 20 20 20 16 10  6  6  8 14  8 10 14 10  6 38

       49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

seed   24  6  6 14  6 24 18  6 16  6 14 28 26 26 10 10  8

border  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

total  24  6  6 14  6 24 18  6 16  6 14 28 26 26 10 10  8

Step 3: Multi-spectral Correlation

After identifying all clusters, one can apply a multi-espectral correlation process in order to consider the results
(generated clusters) from every electromagnetic wavelength. It will not be detailed here, but a common approach
would be only considering clusters which has one or more counterparts close enough with respect to some threshold
on the other channels of the electrogmagnetic spectrum.

Analysis
Figure 4 shows the results after the clustering has been performed by the DBSCAN algorithm with MinPts and eps
set to 5. By looking at the results, we can see that many isolated points have not been clustered because MinPts
parameter restrict the size of a cluster by a minimum value of elements. This restriction will remove clusters that are
too small to be classified as a relevant emission source and consequently are classified as noise. By restricting the

http://en.wikibooks.org/w/index.php?title=File%3AClusteringResults.PNG
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MinPts parameter, celestial objects whose intensity is weak (e.g. they might be too far or do not emit strong
radiation.) are eliminated from the results. This is generally desirable but can become a problem when emission
sources defined by smaller areas must be analysed. Therefore, MinPts value must be carefully chosen since it may
drastically modify the results.
Nevertheless, 64 clusters and 224 outliers were found. Most clusters do not have a large number of points, with some
exceptions, like the large cluster located at the center of the database, which represents galaxy core which is an area
with strong emission. The eps parameter takes an important role as it will define the minimum radius of pixels that
represents the same emission source. Being set to 5 implies that points whose euclidian distance is greater than 5 do
not belong to the same emission source. Although five is relatively large for the eps parameter, some clusters like
those on (300,0) were not clustered together. This is because despite being close to each other they do not represent
the same celestial object according to the eps value. Therefore, setting eps plays a role similar to that of MinPts,
since it will define noise objects with respect to the distance measure, the same was done by the count measure of the
MinPts.

Conclusion
The need to automatize the process of class identification of celestial entities is becoming increasinly important as
astronomy and astrophysics become prominent areas of research. There is a growing demand for this task as
technology evolves ands yields more and larger data samples to be analysed. Otherwise impossible without
computational aid, this task have become easier with the assistance of the DBSCAN technique, which allowed larger
samples to be analysed along with more precise results.
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K-Cores

Introduction
In social networks analysis one of the major concerns is identification of cohesive subgroups os actores within a
network. Friendship relation, publications citation, and many other more. Many studies and researches are focused
on social network analysis, including in data mining. It is really important to find patterns in behavior of large online
social networks, so the firms behind are able to create better mechanism to handle all that information with lower
cost.
Online services such as Orkut, Facebook, Twitter and so on, have millions of users using their services
simultaneously and interacting with others. Even in different services, the behavior of the network is similar.
People tend to interact in the same way as they do in real life, in a structure called “small world”, where people in a
social network can reach any other person with less than seven steps. Such behavior can be studied to prevent
disease propagation or to predict how fast an information can flow in society.
Several notions were introduced to formally describe cohesive groups: cliques, n–cliques, n–clans, n–clubs,
k–plexes, k–cores, lambda sets, . . . For most of them it turns out that they are algorithmically difficult, classified as
NP hard. However for cores very efficient algorithm exists.

The Technique
There are several tasks when handling with social networks. There are some of them listed above.
Link-based object classification – We can classify the object based on its links.
Object type prediction – We can predict the object type based on the objects linked to it.
Link type prediction – Here we want to predict the link type based on the objects linked by it.
Predicting link existence – Now we don't want to know nothing about the link, but it's existence. How to predict
when a link exists between two objects? That's the point here.
Link cardinality estimation – There are several ways to estimate the cardinality of a link, such as counting the
number of links of an object, or counting the numbers of smallest paths that pass through an object.
Object reconciliation – The task is to check whether two objects are the same, based on the links and attributes.
Remove duplicate instances are useful in many applications.
Group detection – A clustering task. Here we want to know when a group of objects belong to the same group.
Subgraph detection - Subgraph identification is to find characteristic subgraphs in a network. This is a form of
search in graphs.
Metadata mining – Metadata is data about data.
The technique that will be explained in this text is about group detection in social networks, based on the degree of
each node in the network.

The Algorithm
K-cores in graph theory were introduced by Seidman in 1983 and by Bollobas in 1984 as a method of (destructively)
simplifying graph topology to aid in analysis and visualization. They have been more recently defined as the
following by Batagelj et al.: given a graph G = {V,E}> with vertices set V and edges set E, the k-core is computed
by pruning all the vertices (with their respective edges) with degree less than k. That means that if a vertex u has
degree du, and it has n neighbors with degree less than k, then u's degree becomes du − n, and it will be also pruned
if k > du − n.
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This operation can be useful to filter or to study some properties of the graphs. For instance, when you compute the
2-core of graph G, you are cutting all the vertices which are in a tree part of graph. (A tree is a graph with no loops).
Note that, there is a refinement (possibly empty) of the k-core of a graph G, for which there exists at least k paths
between any two pairs of vertices of G. This concept is called structural cohesion in sociology[1] and
vertex-connectivity in graph theory, and is equivalent via the Menger theorem to a k-component, a maximal graph
that cannot be disconnected by fewer than k nodes.

Cores
The notion of core is presented in Butts (2010) as following:
Let G = (V, E) be a graph, and let f (v, S, G) for v ∈ V, S ⊆ V be a real-valued vertex property function (in the
language of Batagelj and Zaversnik). Then some set H ⊆ V is a generalized k-core for f if H is a maximal set such
that f (v, H, G) ≥ k for all v ∈ H. Typically, f is chosen to be a degree measure with respect to S (e.g., the number of
ties to vertices in S). In this case, the resulting k-cores have the intuitive property of being maximal sets such that
every set member is tied (in the appropriate manner) to at least k others within the set.
Degree-based k-cores are a simple tool for identifying well-connected structures within large graphs. Let the core
number of vertex v be the value of the highest-value core containing v. Then, intuitively, vertices with high core
numbers belong to relatively well-connected sets (in the sense of sets with high minimum internal degree). It is
important to note that, while a given k-core need not be connected, it is composed of subsets which are themselves
well-connected; thus, the k-cores can be thought of as unions of relatively cohesive subgroups. As k-cores are
nested, it is also natural to think of each k-core as representing a “slice” through a hypothetical “cohesion surface” on
G. (Indeed, k-cores are often visualized in exactly this manner.)
The kcores function produces degree-based k-cores, for various degree measures (with or without edge values). The
return value is the vector of core numbers for V , based on the selected degree measure. Missing (i.e., NA) edge are
removed for purposes of the degree calculation.

Implementation in R

Package sna
Butts (2010) presents a series of implementations in R about algorithms to analysis in social networks. The
implementations uses the package "sna" as follow:
• Package: ‘sna’
• Version: 2.0-1
• Date: 2009-06-07
• Title: Tools for Social Network Analysis
• Author: Carter T. Butts <buttsc@uci.edu>
• Maintainer: Carter T. Butts <buttsc@uci.edu>
• Depends: R (>= 2.0.0), utils
• Suggests: network, rgl, numDeriv, SparseM, statnet
• Description: A range of tools for social network analysis, including node and graph-level indices, structural

distance and covariance methods, structural equivalence detection, p* modeling, random graph generation, and
2D/3D network visualization.

• License: GPL (>= 2)
• URL: http:/ / erzuli. ss. uci. edu/ R. stuff
• Repository: CRAN
• Date/Publication: 2009-06-08 07:08:51

http://erzuli.ss.uci.edu/R.stuff
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To install the package "sna" see http:/ / erzuli. ss. uci. edu/ R. stuff

Description
kcores calculates the k-core structure of the input network, using the centrality measure indicated in cmode.

Usage
   kcores(dat, mode = "digraph", diag = FALSE, cmode = "freeman", ignore.eval = FALSE)

Arguments
                        one or more (possibly valued) graphs.

   dat

                        "digraph" for directed data, otherwise "graph".

   mode

                        logical; should self-ties be included in the degree calculations?

   diag

                        the degree centrality mode to use when constructing the cores.

   cmode

                        logical; should edge values be ignored when computing degree?

   ignore.eval

Value
A vector containing the maximum core membership for each vertex.

function (dat, mode = "digraph", diag = FALSE, cmode = "freeman", 

    ignore.eval = FALSE) 

{

    dat <- as.edgelist.sna(dat, as.digraph = TRUE, suppress.diag = TRUE)

    if (is.list(dat)) 

        return(lapply(dat, kcores, dat = dat, mode = mode, diag = diag, 

            cmode = cmode, ignore.eval = ignore.eval))

    if (mode == "graph") 

        cmode <- "indegree"

    n <- attr(dat, "n")

    m <- NROW(dat)

    corevec <- 1:n

    dtype <- switch(cmode, indegree = 0, outdegree = 1, freeman = 2)

    if (!(cmode %in% c("indegree", "outdegree", "freeman"))) 

        stop("Illegal cmode in kcores.\n")

    solve <- .C("kcores_R", as.double(dat), as.integer(n), as.integer(m), 

        cv = as.double(corevec), as.integer(dtype), as.integer(diag), 

        as.integer(ignore.eval), NAOK = TRUE, PACKAGE = "sna")

    if (is.null(attr(dat, "vnames"))) 

        names(solve$cv) <- 1:n

    else names(solve$cv) <- attr(dat, "vnames")

    solve$cv

}

http://erzuli.ss.uci.edu/R.stuff
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Case Study
To illustrate the k-cores algorithm a simple case study will be shown.

Scenario
Imagine a group of students dining. Each of them may choose another one to sit with him. Each student is a node and
each possibility of sitting together is an edge. We want to group them as friends they are separately.

Input Data
The input data is a adjacency matrix representing the network with students and friendship.

   V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21

1   0  1  2  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0

2   1  0  0  2  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0

3   0  0  0  0  0  0  0  0  1   0   2   0   0   0   0   0   0   0   0   0   0

4   0  0  0  0  1  0  0  2  0   0   0   0   0   0   0   0   0   0   0   0   0

5   0  0  0  1  0  0  0  0  0   0   0   0   0   0   2   0   0   0   0   0   0

6   0  0  0  0  0  0  0  0  2   0   0   0   0   0   0   0   0   0   0   1   0

7   0  0  0  0  0  2  0  0  0   0   0   0   0   0   1   0   0   0   0   0   0

8   0  0  0  0  2  0  0  0  0   0   0   0   0   0   1   0   0   0   0   0   0

9   0  0  0  0  0  1  0  0  0   0   0   0   0   2   0   0   0   0   0   0   0

10  0  0  0  0  0  0  0  0  0   0   0   0   0   0   2   0   0   1   0   0   0

11  0  0  2  0  0  0  0  0  1   0   0   0   0   0   0   0   0   0   0   0   0

12  0  0  0  0  0  0  0  0  0   0   0   0   1   0   0   0   0   0   0   2   0

13  0  0  0  0  0  0  0  0  0   0   0   2   0   0   0   0   0   0   0   0   0

14  0  0  0  0  0  0  0  0  2   0   0   0   0   0   1   0   0   0   0   0   0

15  0  0  0  0  0  0  0  0  2   1   0   0   0   0   0   0   0   0   0   0   0

16  0  0  0  0  0  0  0  0  0   0   0   0   2   0   0   0   0   0   1   0   0

17  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   2   0   0   1

18  0  0  0  0  0  0  0  0  2   0   0   0   0   1   0   0   0   0   0   0   0

19  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   1   0   0   2

20  0  0  0  0  0  0  0  0  0   1   2   0   0   0   0   0   0   0   0   0   0

21  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   1   0   2   0   0

22  0  0  0  0  0  0  0  0  0   0   0   0   2   0   0   0   1   0   0   0   0

23  0  0  0  0  2  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0

24  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   2   0   0   1   0

25  0  0  0  0  0  0  0  0  0   0   0   0   0   0   1   0   2   0   0   0   0

26  0  0  0  0  0  0  0  0  0   0   0   0   1   0   0   0   0   0   0   0   0

   V22 V23 V24 V25 V26

1    0   0   0   0   0

2    0   0   0   0   0

3    0   0   0   0   0

4    0   0   0   0   0

5    0   0   0   0   0

6    0   0   0   0   0

7    0   0   0   0   0

8    0   0   0   0   0

9    0   0   0   0   0
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10   0   0   0   0   0

11   0   0   0   0   0

12   0   0   0   0   0

13   1   0   0   0   0

14   0   0   0   0   0

15   0   0   0   0   0

16   0   0   0   0   0

17   0   0   0   0   0

18   0   0   0   0   0

19   0   0   0   0   0

20   0   0   0   0   0

21   0   0   0   0   0

22   0   0   0   0   0

23   0   0   1   0   0

24   0   0   0   0   0

25   0   0   0   0   0

26   0   0   2   0   0

When there's value 1 it means the first choice and 2 the second one.

Execution
To determine the maximun k-core for each vertex from the network, we have:

kcores(people)

Where "people" is the matrix.

Output
A vector containing the maximum core membership for each vertex.

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 

Analysis
As it is a small network, the maximum k-core is for k=2, so there aren't clear group definition.

Package RBGL
• Package: ‘RBGL’
• Version: 1.26.0
• Date: 2010-10-26
• Title: An interface to the BOOST graph library
• Author: Vince Carey, Li Long, R. Gentleman
• Maintainer: Li Long
• Depends: graph, methods
• Suggests: Rgraphviz
• Description: A fairly extensive and comprehensive interface to the graph algorithms contained in the
BOOST library.
• License: Artistic-2.0



K-Cores 132

• URL: http:/ / www. bioconductor. org
• Repository: CRAN
• Date/Publication: 2010-10-26 12:22:53

Usage
kCores(g, EdgeType=c("in", "out"))

Arguments
• g: an instance of the graph class’
• EdgeType: what types of edges to be considered when g is directed

Details
The implementation is based on the algorithm by V. Batagelj and M. Zaversnik, 2002. The example snacoreex.gxl is
in the paper by V. Batagelj and M. Zaversnik, 2002.

Value
A vector of the core numbers for all the nodes in g.

Examples
library(RBGL)

con1 <- file(system.file("XML/snacoreex.gxl",package="RBGL"))

kcoex <- fromGXL(con1)

close(con1)

kCores(kcoex)

A C B E F D G H J K I L M N O P Q R S T U 

1 2 1 2 3 3 3 3 3 3 3 3 2 2 1 1 2 2 2 2 0 

con2 <- file(system.file("XML/conn2.gxl",package="RBGL"))

kcoex2 <- fromGXL(con2)

close(con2)

kCores(kcoex2)

A B C D E G H F 

3 3 3 3 3 3 3 3 

kCores(kcoex2, "in")

A B C D E G H F 

0 0 0 0 0 0 0 0 

kCores(kcoex2, "out")

A B C D E G H F 

0 0 0 0 0 0 0 0 

http://www.bioconductor.org
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Fuzzy Clustering - Fuzzy C-means

Introduction
The aim of clustering is to minimize a set of data points into self-similar groups such that the points that belong to
the same group are more similar than the points belonging to different groups. Each group is called a cluster.
This text will appear one more of the algorithms discussed in the literature known as Fuzzy C-Means. After the
presentation of the technique will be presented an R package that implements this algorithm. Finally, a case study
will be made using the algorithm implemented and presented the results obtained.

Technique/Algorithm
Fuzzy C-means (FCM----Frequently C Methods) is a method of clustering which allows one point to belong to one
or more clusters. The method was developed by Dunn in 1973 and improved by Bezdek in 1981 and it is frequently
used in pattern recognition. The FCM algorithm attempts to partition a finite collection of points into a collection of
C fuzzy clusters with respect to some given criteria. Thus, points on the edge of a cluster, may be in the cluster to a
lesser degree than points in the center of cluster. The FCM algorithm is based on minimization of the following
objective function:

Algorithm
The FCM is also known as fuzzy k-means nebulous because it uses fuzzy logic [Zadeh 1965] so that each instance is
not associated with only one cluster, but has a certain degree of membership for each of the existing centroids. For
this, the algorithm creates a matrix U associativity, where each term μij represents the degree of membership of
sample i to cluster j. In the FCM algorithm have a variable fuzziness m such that 1.0 < m < where m and being a
real number. The closer m is to infinity ( ), the greater the fuzziness of the solution and the closer to 1, the
solution becomes increasingly similar to the clustering of binary k-means [Bezdek 1981]. A good choice is to set m =
2.0 [Hathaway and Bezdek 2001].
You can see both the k-means and FCM together in the same pseudo-code described in (Algorithm 1). In it, we have
the k-means or FCM only by changing the formula to calculate the terms μij, changing the average fuzzy [Zadeh
1965] for a binary choice, showing that FCM is indeed the K-Means cloudy.

In (Algorithm 1), the manner stating that is the distance away Euclidean to the a to b taking as input: set 
of samples xi (1 < i < N), plain number of clusters K factor cloudiness me a factor of Tolerance, we leave on the: a 
cluster vector ci (1 < i < K) and a matrix U determines the associativity of each sample with each of the clusters. It 
should be noted that the values of the matrix U depend only on H (array that stores the distances are the examples of 
clusters) and the value of m. The upgrade of the clusters depend solely on the values of the iteration matrix U in

http://www.bioconductor.org/packages/release/bioc/html/RBGL.html'''.
http://www.bioconductor.org/packages/release/bioc/html/RBGL.html'''.
http://erzuli.ss.uci.edu/R.stuff/'''.
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iteration.

Implementation
The algorithm described above was implemented by the R package "e1071" released in 21/04/2010. This package
has GPL-2 and can be found in the CRAN repository.
Install CBA Package

install.packages("e1071")

Importing methods and algorithm

library("e1071")

Usage:

cmeans(x, centers, iter.max = 100, verbose = FALSE,

       dist = "euclidean", method = "cmeans", m = 2,

       rate.par = NULL, weights = 1, control = list())

Arguments:

• x: The data matrix where columns correspond to variables and rows to observations.
• centers: Number of clusters or initial values for cluster centers.
• iter.max: Maximum number of iterations.
• verbose: If TRUE, make some output during learning.
• dist: Must be one of the following: If "euclidean", the mean square error,
if "manhattan", the mean absolute error is computed. Abbreviations are also accepted.

• method:  If "cmeans", then we have the c-means fuzzy clustering method, 
if "ufcl" we have the on-line update. Abbreviations are also accepted.

• m: A number greater than 1 giving the degree of fuzzification.
• rate.par: A number between 0 and 1 giving the parameter of the learning rate for the 
on-line variant. The default corresponds to 0:3.

• weights: a numeric vector with non-negative case weights. Recycled to the 
number of observations in x if necessary.

• control: a list of control parameters. See Details.

If everything goes ok, an object fclust is returned. This object has the following components:

• centers: the final cluster centers.

• size: the number of data points in each cluster of the closest hard clustering.

• cluster: a vector of integers containing the indices of the clusters where the data points are assigned 

to for the closest hard clustering, as obtained by assigning points to the (first) class with maximal membership.

• iter: the number of iterations performed.

• membership: a matrix with the membership values of the data points to the clusters.

• withinerror: the value of the objective function.

• call: the call used to create the object.
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View
There is one way to show the result from this algorithm. That way would be printing the object fclust :

print(fclust)

Example

To illustrate the method implemented by the package studied, we have created two examples. The first one is created
an array of two dimensions and in the second example creates an array with three dimensions. In both examples we
used a normal distribution with a mean ranging and using a standard deviation of 0.3.
Example 1

# a 2-dimensional example

x<-rbind(matrix(rnorm(100,sd=0.3),ncol=2),

matrix(rnorm(100,mean=1,sd=0.3),ncol=2))

cl<-cmeans(x,2,20,verbose=TRUE,method="cmeans",m=2)

print(cl)

Example 2

# a 3-dimensional example

x<-rbind(matrix(rnorm(150,sd=0.3),ncol=3),

matrix(rnorm(150,mean=1,sd=0.3),ncol=3),

matrix(rnorm(150,mean=2,sd=0.3),ncol=3))

cl<-cmeans(x,6,20,verbose=TRUE,method="cmeans")

print(cl)

Output - Example 1

Output - Example 2

Case Study
The topics below describe the case study to demonstrate the results obtained using the Fuzzy C-Means.

Scenario
In the proposed case study, we used the database available in packages Iris R. This database consists of 150 instances
each containing features of flower petals. Each instance of a database has its classification. There are three different
classifications for the instances of the database (setosa, versicolor and virginica). Each of the classes present in the
database studied has 50 examples that in total, summarize the 150 instances of the base. In addition to the definitions
of classes in each of these instances, the other features are:
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Datasets
The database of iris used in the experiment can be charged in the language R using the following command.

data(iris)

The table below has a small sample of the data contained in the iris database.
Table 1: Samples of iris database

Instance Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

72 6.1 2.8 4.0 1.3 versicolor

73 6.3 2.5 4.9 1.5 versicolor

114 5.7 2.5 5.0 2.0 virginica

115 5.8 2.8 5.1 2.4 virginica

Execution
To generate the results using the Fuzzy C-Means was run the script below.

data(iris)

x<-rbind(iris$Sepal.Length, iris$Sepal.Width, iris$Petal.Length)

x<-t(x)

result<-cmeans(x,3,50,verbose=TRUE,method="cmeans")

print(result)

s3d <- scatterplot3d(result$membership, color=result$cluster, type="h", 

angle=55, scale.y=0.7, pch=16, main="Pertinence")

plot(iris, col=result$cluster)

Output
The results obtained by running the script are shown below.

Fuzzy c-means clustering with 3 clusters

Cluster centers:

      [,1]     [,2]     [,3]

1 5.003653 3.412805 1.484775

2 5.874034 2.760272 4.382520

3 6.793622 3.054510 5.644347

Memberships:

                  1            2            3

  [1,] 0.9964733414 2.388793e-03 1.137865e-03

  [2,] 0.9730096494 1.850758e-02 8.482767e-03

  [3,] 0.9776389508 1.515266e-02 7.208389e-03

  [4,] 0.9635322892 2.503070e-02 1.143701e-02

  [5,] 0.9939984763 4.051202e-03 1.950322e-03
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  [6,] 0.9304507689 4.703382e-02 2.251542e-02

  [7,] 0.9775132049 1.523242e-02 7.254371e-03

  [8,] 0.9999369153 4.314160e-05 1.994308e-05

  [9,] 0.9225703038 5.279889e-02 2.463081e-02

 [10,] 0.9834280681 1.141773e-02 5.154205e-03

 [11,] 0.9636309639 2.453957e-02 1.182947e-02

 [12,] 0.9914862878 5.851313e-03 2.662399e-03

 [13,] 0.9693327053 2.101145e-02 9.655842e-03

 [14,] 0.9162524471 5.600693e-02 2.774062e-02

 [15,] 0.8773228961 7.968730e-02 4.298980e-02

 [16,] 0.8300898328 1.098729e-01 6.003725e-02

 [17,] 0.9444844043 3.671434e-02 1.880126e-02

 [18,] 0.9964733414 2.388793e-03 1.137865e-03

 [19,] 0.8917869903 7.312086e-02 3.509215e-02

 [20,] 0.9768481880 1.559135e-02 7.560459e-03

 [21,] 0.9638052097 2.505889e-02 1.113590e-02

 [22,] 0.9862983266 9.267056e-03 4.434618e-03

 [23,] 0.9544955743 3.001379e-02 1.549064e-02

 [24,] 0.9879996300 8.348552e-03 3.651818e-03

 [25,] 0.9619796590 2.665281e-02 1.136753e-02

 [26,] 0.9700883809 2.080884e-02 9.102779e-03

 [27,] 0.9978125723 1.505741e-03 6.816871e-04

 [28,] 0.9927414381 4.946076e-03 2.312486e-03

 [29,] 0.9931235860 4.671305e-03 2.205109e-03

 [30,] 0.9770882461 1.581612e-02 7.095630e-03

 [31,] 0.9761442368 1.652997e-02 7.325795e-03

 [32,] 0.9748518908 1.716740e-02 7.980706e-03

 [33,] 0.9320017983 4.510961e-02 2.288859e-02

 [34,] 0.8927033428 7.017637e-02 3.712029e-02

 [35,] 0.9834280681 1.141773e-02 5.154205e-03

 [36,] 0.9833813658 1.121223e-02 5.406405e-03

 [37,] 0.9595420958 2.713202e-02 1.332588e-02

 [38,] 0.9926144115 4.984365e-03 2.401224e-03

 [39,] 0.9331691292 4.525365e-02 2.157722e-02

 [40,] 0.9984835370 1.037187e-03 4.792755e-04

 [41,] 0.9942973683 3.839814e-03 1.862818e-03

 [42,] 0.8379960489 1.102335e-01 5.177041e-02

 [43,] 0.9474894758 3.543286e-02 1.707767e-02

 [44,] 0.9966468801 2.299980e-03 1.053140e-03

 [45,] 0.9422485213 3.983938e-02 1.791210e-02

 [46,] 0.9693327053 2.101145e-02 9.655842e-03

 [47,] 0.9736866788 1.782324e-02 8.490078e-03

 [48,] 0.9713101708 1.953226e-02 9.157566e-03

 [49,] 0.9741716274 1.744780e-02 8.380577e-03

 [50,] 0.9970704014 1.996528e-03 9.330710e-04

 [51,] 0.0396263985 3.645217e-01 5.958519e-01

 [52,] 0.0318692598 7.303043e-01 2.378264e-01
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 [53,] 0.0257989245 2.759514e-01 6.982496e-01

 [54,] 0.0547597033 8.587710e-01 8.646929e-02

 [55,] 0.0257236267 7.190557e-01 2.552207e-01

 [56,] 0.0044884340 9.781328e-01 1.737878e-02

 [57,] 0.0312129593 6.547331e-01 3.140540e-01

 [58,] 0.2958341637 5.694232e-01 1.347426e-01

 [59,] 0.0303580096 6.398237e-01 3.298183e-01

 [60,] 0.0880779511 8.134764e-01 9.844565e-02

 [61,] 0.2205273013 6.298451e-01 1.496276e-01

 [62,] 0.0105098293 9.591134e-01 3.037677e-02

 [63,] 0.0462415004 8.537411e-01 1.000174e-01

 [64,] 0.0127683343 8.793406e-01 1.078911e-01

 [65,] 0.1097850604 7.908698e-01 9.934511e-02

 [66,] 0.0439788476 6.323928e-01 3.236284e-01

 [67,] 0.0142403104 9.357246e-01 5.003511e-02

 [68,] 0.0107489244 9.647242e-01 2.452687e-02

 [69,] 0.0297161608 8.212906e-01 1.489932e-01

 [70,] 0.0472514422 8.832597e-01 6.948890e-02

 [71,] 0.0244685053 7.865167e-01 1.890147e-01

 [72,] 0.0231707557 9.204749e-01 5.635439e-02

 [73,] 0.0242412459 6.647915e-01 3.109672e-01

 [74,] 0.0115014923 8.931765e-01 9.532196e-02

 [75,] 0.0252735484 8.457138e-01 1.290126e-01

 [76,] 0.0367090402 7.041271e-01 2.591639e-01

 [77,] 0.0295101840 4.167745e-01 5.537153e-01

 [78,] 0.0196749600 2.703807e-01 7.099444e-01

 [79,] 0.0046165774 9.710517e-01 2.433168e-02

 [80,] 0.1233870645 7.695546e-01 1.070584e-01

 [81,] 0.0763633248 8.316087e-01 9.202798e-02

 [82,] 0.0956781157 8.038125e-01 1.005094e-01

 [83,] 0.0317355256 9.149948e-01 5.326970e-02

 [84,] 0.0237392176 6.474085e-01 3.288522e-01

 [85,] 0.0279975037 8.909775e-01 8.102497e-02

 [86,] 0.0346333192 7.957193e-01 1.696474e-01

 [87,] 0.0327144512 4.847696e-01 4.825159e-01

 [88,] 0.0287006017 8.325287e-01 1.387707e-01

 [89,] 0.0265872664 9.220512e-01 5.136156e-02

 [90,] 0.0425465997 8.901942e-01 6.725921e-02

 [91,] 0.0165454512 9.380639e-01 4.539066e-02

 [92,] 0.0126391727 8.984548e-01 8.890606e-02

 [93,] 0.0217893662 9.356063e-01 4.260431e-02

 [94,] 0.2778346035 5.864740e-01 1.356914e-01

 [95,] 0.0130250339 9.574755e-01 2.949948e-02

 [96,] 0.0143369500 9.506283e-01 3.503480e-02

 [97,] 0.0098869130 9.658287e-01 2.428443e-02

 [98,] 0.0128272275 9.306614e-01 5.651133e-02

 [99,] 0.3958967535 4.819128e-01 1.221905e-01
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[100,] 0.0138782641 9.568112e-01 2.931057e-02

[101,] 0.0168213369 1.202409e-01 8.629378e-01

[102,] 0.0261693250 7.099212e-01 2.639094e-01

[103,] 0.0064283347 4.003438e-02 9.535373e-01

[104,] 0.0121558071 1.363357e-01 8.515085e-01

[105,] 0.0051285341 4.386983e-02 9.510016e-01

[106,] 0.0380603711 1.582822e-01 8.036574e-01

[107,] 0.0796613905 7.682136e-01 1.521250e-01

[108,] 0.0215250742 1.079049e-01 8.705700e-01

[109,] 0.0133896976 1.083710e-01 8.782393e-01

[110,] 0.0222927779 1.077325e-01 8.699748e-01

[111,] 0.0188704621 2.634073e-01 7.177222e-01

[112,] 0.0170114260 2.579486e-01 7.250400e-01

[113,] 0.0012069886 1.088884e-02 9.879042e-01

[114,] 0.0272794217 7.782927e-01 1.944279e-01

[115,] 0.0260263274 7.022101e-01 2.717635e-01

[116,] 0.0143300831 1.808070e-01 8.048629e-01

[117,] 0.0055448160 6.051225e-02 9.339429e-01

[118,] 0.0542553271 1.919346e-01 7.538101e-01

[119,] 0.0522340053 2.006703e-01 7.470957e-01

[120,] 0.0331219678 6.903576e-01 2.765205e-01

[121,] 0.0016396213 1.177291e-02 9.865875e-01

[122,] 0.0232292512 8.358772e-01 1.408936e-01

[123,] 0.0446065451 1.785215e-01 7.768719e-01

[124,] 0.0214638942 6.565434e-01 3.219927e-01

[125,] 0.0033893690 2.584416e-02 9.707665e-01

[126,] 0.0114583443 6.335614e-02 9.251855e-01

[127,] 0.0173352405 7.863541e-01 1.963106e-01

[128,] 0.0207474129 7.187218e-01 2.605308e-01

[129,] 0.0101190052 1.107064e-01 8.791746e-01

[130,] 0.0076951023 4.751066e-02 9.447942e-01

[131,] 0.0203964684 1.059183e-01 8.736853e-01

[132,] 0.0542244082 1.915598e-01 7.542157e-01

[133,] 0.0101190052 1.107064e-01 8.791746e-01

[134,] 0.0209695496 4.545456e-01 5.244849e-01

[135,] 0.0248052462 2.990893e-01 6.761055e-01

[136,] 0.0299588767 1.357829e-01 8.342583e-01

[137,] 0.0163979126 1.472580e-01 8.363440e-01

[138,] 0.0087535054 9.693234e-02 8.943141e-01

[139,] 0.0169168345 8.303003e-01 1.527828e-01

[140,] 0.0037050972 3.198944e-02 9.643055e-01

[141,] 0.0006389323 5.579855e-03 9.937812e-01

[142,] 0.0153630352 1.530446e-01 8.315924e-01

[143,] 0.0261693250 7.099212e-01 2.639094e-01

[144,] 0.0036930153 2.507113e-02 9.712359e-01

[145,] 0.0033893690 2.584416e-02 9.707665e-01

[146,] 0.0106923302 1.279688e-01 8.613389e-01
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[147,] 0.0250155507 5.900274e-01 3.849571e-01

[148,] 0.0138756337 2.012898e-01 7.848346e-01

[149,] 0.0230709595 2.493458e-01 7.275832e-01

[150,] 0.0261065981 6.399365e-01 3.339569e-01

Closest hard clustering:

  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 [46] 1 1 1 1 1 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2

 [91] 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 3 3

[136] 3 3 3 2 3 3 3 2 3 3 3 2 3 3 2

Available components:

[1] "centers"     "size"        "cluster"     "membership"  "iter"        "withinerror"

[7] "call"   

The chart below shows the relevance of each party to each of the clusters generated. Each cluster generated can be
identified with a color (green, red or black).

The graphs below show the classification of each instance by comparing each pair of attributes present in the
database.

http://en.wikibooks.org/w/index.php?title=File:GraficoPertinencia.gif
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Analysis
Application of Fuzzy C-Means algorithm allowed a homogeneous grouping of classes as expected. Soon, the three
generated classes have a very similar amount of instances present. The algorithm presented in addition to the class
that was ranked a given instance, the relevance of this instance to that class. This information allows the person
responsible for analyzing the results can devote their attention to the proceedings that do not have a high degree of
relevance to a particular class.
The instances of the database analyzed that do not have a high degree of relevance, this degree being defined by the
user should be analyzed for Chace whether they really belong to the class informed by the algorithm. In the chart
presented pertinencia realize that some instances of Class 2, marked in red do not have a high amount of relevance.
This possibly indicates that the algorithm may have erred in its classification as the values of the attributes of these
instances do not identify with a high degree of certainty these instances.
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RockCluster

Introduction
Clustering is a useful technique for grouping data points such that points within a single group/cluster have similar
characteristics ( or are close to each other), while points in different groups are dissimilar.
We describe the ROCK (RObust Clustering using linKs) clustering algorithm which belongs to the class of
agglomerative hierarchical clustering algorithms.

Technique/Algorithm

Algorithm
The steps involved in clustering using ROCK are described in the following figure. After drawing a random sample
from the database, a hierarchical clustering algorithm that employs links is applied to the sampled points. Finally, the
clusters involving only the sampled points are used to assign the remaining data points on disk to the appropriate
clusters. In the following subsections, we first describe the steps performed by ROCK in greater detail.

Clustering Algorithm

ROCK`s hierarchical clustering algorithm is presented in the following figure. It accepts as input the set S of N
sampled points to be clustred (that are drawn randomly from the original data set), and the number of desired clusters
k. The procedure begins by computing the number of links between pairs of points in Step 1. Initially, each point is
separate cluster. For each cluster i, we build a local heap q[i] and maintain the heap during the execution of the
algorithm. q[i] contains every cluster j such that link[i,j] is non-zero. The clusters j in q[i] are ordered in the
decreasing order of the goodness measure with respect to i, g(i,j).
In addition to the local heaps q[i] for each cluster i, the algorithm also maintains an additional global heap Q that
contains all the clusters. Furthermore, the clusters in Q are ordered in the decreasing order of their best goodness
measures. Thus, g(j,max(q[j])) is used to order the various clusters j in Q, where max(q[j]), the max element in q[j],
is the best cluster to merge with cluster j. At each step, the max cluster j in Q and the max cluster q[j] are the best
pair of clusters to be merged.

http://en.wikibooks.org/w/index.php?title=File:Rock1.png
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Computation of Links

For every point, after computing a list of its neighbors, the algorithm considers all pairs of its neighbors. For each
pair, the point contributes one link. If the process is repeated for every point and the link count is incremented for
each pair of neighbors, then at the end, the link counts for all pairs of points will be tained. If Mi is the size of the
neighbor list for point i, then for point i, we have to increase the link count by one in M^2i entries. This, the
complexity of the algorithm is the sum of M^2i which is O(N * Mm * Ma), where Ma and Mm are the average and
maximum number of the neighbors for a point, respectively. In the worst case, the value of Mm can be n in which
case the complexity of the algorithm becomes O(Ma * N^2). In practice, we expect Mm to be reasonably close to Ma
and thus, for these cases, the complexity of the algorithm reduces to O(M^2a * n) on average.

http://en.wikibooks.org/w/index.php?title=File:Rock2.png
http://en.wikibooks.org/w/index.php?title=File:Rock3.png
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Implementation
In order to use the K-Means algorithm in R, one must install "CBA" package. This package includes a function that
performs the RockCluster process.
Install CBA Package

install.packages("cba")

Importing methods and algorithm

library("cba")

Usage:

rockCluster(x, n, beta = 1-theta, theta = 0.5, fun = "dist",

funArgs = list(method="binary"), debug = FALSE)

rockLink(x, beta = 0.5)

Arguments:

  X: a data matrix; for rockLink an object of class dist.

  n:  the number of desired clusters. 

  beta: optional distance threshold.

  theta: neighborhood parameter in the range [0,1).

  fun: distance function to use.

  funArgs: a list of named parameter argu

If everything goes ok, an object rockCluster is returned. This object has the following components:

x: the data matrix or a subset of it.

cl: a factor of cluster labels.

size: a vector of cluster sizes.

beta: see above.

theta: see above.

rockLink: returns an object of class dist.

View
There is one way to show the result from this algorithm. That way would be printing the object RockCluster:

print(RockObject)

Example

For an example , we will use the algorithm with the "Mushroom" dataset provided by the CBA package:

data("Mushroom")

x <- as.dummy(Mushroom[-1])

rc <- rockCluster(x[sample(dim(x)[1],1000),], n=10, theta=0.8)

print(rc)

rp <- predict(rc, x)

table(Mushroom$class, rp$cl)

Output - Mushroom
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Case Study
In this section, we illustrate a case study with RockCluster:

Scenario
Historically the U.S.A elections are characterized by two major political parties. One called Republican Party
generally reflecting the American conservatism in the political spectrum and the other called Democratic Party
known as more "liberal" or "progressive".
The idea is to use an database of the United States Cogressional votes provided by UCI Machine Learning
Repository and perform the RockCluster technique to separate Democrats from Republicans.

Dataset
The Congressional voting dataset was obtained from the UCI Machine Learning Repository. It is the United States
Cogressional Voting Records in 1984. Each record corresponds to one Congress man's votes on 16 issues ( E.g.,
education spending, crime). All attributes are boolean with Yes (that is, 1) and No (0) values, and very few contain
missing values. A classification label of Republican or Democrat is provided with each data record. The data set
contains records for 168 Republicans and 267 Democrats.

http://en.wikibooks.org/w/index.php?title=File:Rock4.png
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Execution
R Code:

data(Votes)

x <- as.dummy(Votes[-17])

rc <- rockCluster(x, n=2, theta=0.73, debug=TRUE)

print(rc)

rf <- fitted(rc)

table(Votes$Class, rf$cl)

Output
The result of printing the components of the class returned by the function application is shown below:

Analysis

As the table illustrates, ROCK and the traditional algorithm, both identify two clusters, one containing a large
number of republicans and the other containing a majority of democrats. However, in the cluster for republicans
found by the traditional algorithm, around 25% of the members are democrats, while with ROCK, only 12% are

http://en.wikibooks.org/w/index.php?title=File:Rock5.png
http://en.wikibooks.org/w/index.php?title=File:Rock6.png
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democrats. The improvement in the quality of clustering can be attributed to the usage of links by ROCK.
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2. CBA R package. [1]
3. UCI Machine Learning Repository [2]
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Biclust

Introduction
Over the last decade, bicluster methods have become more and more popular in different fields of two way data
analysis and a wide variety of algorithms and analysis methods have been published.
Biclustering is an important new technique in two way data analysis. After Cheng and Church (2000) followed the
initial bicluster idea of Hartigan (1972) and started to calculate bicluster on microarray data, a wide range of
different articles were published dealing with different kinds of algorithms and methods to preprocess and analyze
the results of such methods. Comparisons of several bicluster algorithms can be found, e.g., in Madeira and Oliveira
(2004) or Prelic et al. (2006).

Why Biclustering?
•• Simultaneous clustering of 2 dimensions;
•• Large datasets where clustering leads to diffuse results;
•• Only parts of the data influence each other;

Initial Situation

Two-Way Dataset: 

http://www.dcc.ufmg.br/miningalgorithms/DokuWiki/doku.php
http://cran.r-project.org/web/packages/cba/index.html
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://cran.r-project.org/web/packages/cba/index.html
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://en.wikibooks.org/w/index.php?title=File:Siduiee.png
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Goal
Finding subgroups of rows and columns which are as similar as possible to each other and as different as possible to
the rest.

Technique/Algorithm

Algorithm
Sebastian Kaiser and Friedrich Leisch started to implement a comprehensive bicluster toolbox in R (R
Development Core Team, 2007).

It provides a growing list of bicluster methods, together with pre-processing and visualization techniques, using S4
classes and methods (Chambers, 1998). The software is open source and freely available from R-Forge at http:/ /
R-Forge. R-project. org.

One of the main design principles of the package is to provide the results as an entity of Biclust-Class, an
S4-class containing all information needed for postprocessing of results.

It consists of the four slots Parameters, RowxNumber, NumberxCol and Number. Slot Parameters contains
parameters and algorithm used, Number the number of biclusters found. The RowxNumber and NumberxCol slots
represents the biclusters that have been found. They are both logical matrices of dimension (rows of data × number
of biclusters found) with a TRUE-value in RowxNumber[i,j] if row i is in bicluster j. NumberxCol is the same for
the columns, but due to computational reasons, here the rows of the matrix represent the number of biclusters and the
columns represent the columns of the data. So by simply calling data [ Biclust@RowxNumber[,a] *
Biclust@NumberxCol[a,] ] the values of the bicluster a can be extracted.

Objects of class Biclust-class are created using a uniform interface for all bicluster methods by calls of form
biclust(x,method=BiclustMethod,...).

This generic function takes as inputs the preprocessed data matrix x, a bicluster algorithm represented as a
Biclustmethod-Class and additional arguments. In the following we give a brief description of the five algorithms
already implemented in the package, subsection headings correspond to the name of the respective
Biclustmethod-Class. The naming scheme is BCxxx where xxx is an abbreviation for the name of the algorithm.
Some methods have been chosen because open source code from the original authors is available, others have been
newly implemented to make the overall toolbox as comprehensive as possible. Of course, there is always room for
improvement, and more methods will be added to the package in the future. See also van Mechelen and Schepers
(2006) for a discussion on main directions of bicluster calculation. Algorithms are described in alphabetic order and,

http://en.wikibooks.org/w/index.php?title=File:Saoidjfi99.png
http://en.wikibooks.org/w/index.php?title=File:Saoidjfi99.png
http://R-Forge.R-project.org.
http://R-Forge.R-project.org.
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if not stated otherwise, functions were implemented in interpreted S code.

Implementation

Install

In order to use the Biclust algorithm in R, one must install Biclust package and library:

install.packages("biclust")

library("biclust") 

Usage

# S4 method for signature 'matrix,BCBimax': 

biclust(x, method=BCBimax(), minr=2, minc=2, number=100)

# S4 method for signature 'matrix,BCrepBimax': 

biclust(x, method=BCrepBimax(), minr=2, minc=2, number=100, maxc=12)

Where the argumets are:
•• x - A logical matrix which represents the data.
•• method - Here BCBimax, to perform Bimax algorithm.
•• minr - Minimum row size of resulting bicluster.
•• minc - Minimum column size of resulting bicluster.
•• number - Number of Bicluster to be found.
•• maxc - Maximum column size of resulting bicluster.
If everything goes OK, an object Biclust is returned.

View
As we can see below, an object Biclust is returned and we can plot it or just get the final object.

> test <- matrix(rbinom(400, 50, 0.4), 20, 20)

> res1 <- biclust(test, method=BCCC(), delta=1.5, alpha=1, number=10)

> res1

An object of class Biclust 

call:

      biclust(x = test, method = BCCC(), delta = 1.5, alpha = 1, number = 10)

Number of Clusters found:  10 

First  5  Cluster sizes:

                   BC 1 BC 2 BC 3 BC 4 BC 5

Number of Rows:    "7"  "4"  "6"  "6"  "5" 

Number of Columns: "5"  "8"  "4"  "5"  "6"

We'll give some examples of plots in the "Case Study" session.
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Case Study

Scenario
As a standard example we ran all the algorithms on the BicatYeast data from Barkow et al. (2006). To do so
the data has to be preprocessed and committed to the biclust function

together with the chosen algorithm (here Xmotifs) and parameters.

Datasets
BicatYeast

•• Subsample of the Saccharomyces Cerevisiae organism (Yeast).
•• Used to present bicluster algorithms by Barkow et al. (2006)
•• Microarray data: 419 genes, 80 experiments.

Execution
data(BiclustYeast)

x <- discretize(Bicatyeast)

res <- biclust(x, method=BCXmotifs(), alpha=0.05, number=50)

Output
To visualize the result you can simply call any visualization function on the result, for example:

> parallelCoordinates( x=BicatYeast, result=res, bicluster=4)

Example for parallel coordinates plot: Expression levels of conditions across their genes in the 4th
bicluster in the result of

the Xmotifs algorithm.

Bicluster results similarity measure with an adaptation of Jaccard index:

http://en.wikibooks.org/w/index.php?title=File:Ajosiu99.png
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Analysis
Table 1 shows the pairwise Jaccard indices of all bicluster algorithms. The Jaccard index is a measure of
similarity between two

cluster results, zero means no concordance, one means that the results are identical. It can be seen that all algorithms
find very different sets of biclusters. This can be partly explained by different pre-processing steps which were
necessary such that the data conform to the respective assumptions of the algorithms.

Another important aspect is that we selected the first algorithms to implement to get a collection of algorithms
which differ from

each other as much as possible. It is now very easy for practitioners to try various bicluster methods in R and choose
the one which works best for given data set.
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Partitioning Around Medoids (PAM)

Introduction
Clustering is a unsupervised machine learning algorithm that groups entities, from a dataset, that have high degree of
similarity in a same cluster. Nowadays lots of areas are using this kind of algorithms to separate datasets into groups
in a automated way, and still have a good quality result.
The clustering process is not a universal process because that are a lot of kind of groups of datasets, for some of this
the kind of metric is a relevant thing, for others the entities that represent each cluster are more interesting. Like
datasets groups there are a lot of kind of clustering algorithms each one tries to take advantage of a kind of group of
data, so this way each one of them is more suited to a more specific kind of data.
This section will explain a little more about the Partitioning Around Medoids (PAM) Algorithm, showing how the
algorithm works, which are its parameters and what they mean, and an example of a dataset, and of how to execute
the algorithm, and the result of that execution with the dataset as input.

The Partitioning Around Medoids (PAM) Algorithm

Algorithm
The PAM algorithm was developed by Leonard Kaufman and Peter J. Rousseeuw, and this algorithm is very similar
to K-means, mostly because both are partitional algorithms, in other words, both break the datasets into groups, and
both works trying to minimize the error, but PAM works with Medoids, that are an entity of the dataset that represent
the group in which it is inserted, and K-means works with Centroids, that are artificially created entity that represent
its cluster.
The PAM algorithm partitionates a dataset of n objects into a number k of clusters, where both the dataset and the
number k is an input of the algorithm. This algorithm works with a matrix of dissimilarity, where its goal is to
minimize the overall dissimilarity between the representants of each cluster and its members. The algorithm uses the

following model to solve the problem: 

Subject to:
1. Σ i=1 n zij = 1 , j = 1,2,...,n
2. zij ≤ yi , i, j = 1,2,...,n
3. Σ i=1 n yi = k , k = number of clusters
4. yi , zij € {0,1} , i, j = 1,2,...,n
Where F(x) is the main function to minimize, where d(i,j) is the dissimilarity measurement between the entities i and
j, and zij is a variable that ensures that only the dissimilarity between entities from the same cluster will be computed
in the main function. The others expressions are constraints that have the following functions: (1.) ensures that every
single entity is assigned to one cluster and only one cluster, (2.) ensures that the entity is assigned to its medoid that
represent the cluster, (3.) ensures that there is a number exactly equals to k of clusters and (4.) let the decision
variables assume just the values of 0 or 1.
The PAM algorithm can work over two kind of input, the first is the matrix representing every entity and the values
of its variables, and the second is to work with the dissimilarity matrix directly, in the later the user can provide the
dissimilarity directly as an input to the algorithm, instead of the data matrix representing the entities. Either way the
algorithm reach an solution to the problem, in a general analysis the algorithm proceed this way:
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Build phase:

1. Choose k entities to become the medoids, or in case these entities were provided use the them as the
medoids;
2. Calculate the dissimilarity matrix if it was not informed;
3. Assign every entity to its closest medoid;

Swap phase:

4. For each cluster search if any of the entities of the cluster lower the average dissimilarity coefficient, if it
does select the entity that lower the most this coefficient as the medoid for this cluster;
5. If at least the medoid from one cluster has changed go to (3), else end the algorithm.

As was said the PAM algorithm works with a matrix of dissimilarity, and to calculate this matrix the algorithm can
use two metrics the first one is the euclidean, that are the root sum-of-squares of differences, while the second one is
the manhattan distance that are the sum of absolute distances.

Implementation
The pseudocode of PAM algorithm is shown below:
Algorithm 1: PAM Algorithm Input: E = {e1,e2,...en} (dataset to be clustered or matrix of dissimilarity)

k (number of clusters)
metric (kind of metric to use on dissimilarity matrix)
diss (flag indicating that E is the matrix of dissimilarity or not)

Output: M = {m1,m2,...,mk} (vector of clusters medoids)
L = {l(e) | e = 1,2,...,n} (set of cluster labels of E)

foreach mi € M do

mi ← ej € E; (e.g. random selection)
end if diss ≠ true

Dissimilarity ← CalculateDissimilarityMatrix(E, metric);
else

Dissimilarity ← E;
end repeat

foreach ei € E do

l(ei) ← argminDissimilarity(ei, Dissimilarity, M);
end

changed ← false;
foreach mi € M do

Mtmp ← SelectBestClusterMedoids(E, Dissimilarity, L);
end

if Mtmp ≠ M
M ← Mtmp;
changed ← true;

end

until changed = true;
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In the R programming language, the PAM algorithm is available in the cluster package and can be called by the
following command:

pam(x, k, diss, metric, medoids, stand, cluster.only, do.swap, keep.diss, keep.data,

trace.lev)

Where the parameters are:
x: numerical data matrix representing the dataset entities, or can be the dissimilarity matrix, it depends on the value
of the diss parameter. In case x is a data matrix each row is an entity and each column is an variable, and in this case
missing values are allowed as long as every pair of entities has at least one case not missing. In case x is a
dissimilarity matrix it is not allowed to have missing values.
k: number of clusters that the dataset will be partitioned where 0 < k < n, where n is the number of entities.
diss: logical flag, if it is TRUE x is used as the dissimilarity matrix, if it is FALSE, then x will be considered as a
data matrix.
metric: an string specifying each of the two metrics will be used to calculate the dissimilarity matrix, the metric
variable can be “euclidean” to use the Euclidean distance, or can be “manhattan” to use the Manhattan distance.
stand: logical flag, if it is TRUE then the measurements in x will be standardized before calculating the
dissimilarities. Measurements are standardized for each column, by subtracting the column's mean value and
dividing by the variable's mean absolute deviation. If x is a dissimilarity matrix then this parameter is ignored.
cluster.only: logical flag, if it is TRUE, only the clustering will be computed and returned.
do.swap: logical flag, indicates if the swap phase should happen (TRUE) or not (FALSE).
keep.diss: logical flag indicating if the dissimilarities should (TRUE) or not (FALSE) be kept in the result.
keep.data: logical flag indicating if the input data x should (TRUE) or not (FALSE) be kept in the result.
trace.lev: an numeric parameters specifying a trace level for printing diagnostics during the build and swap phase of
the algorithm. Default 0 does not print anything.
The PAM algorithm return a pam object that contains the information about the result of the execution of the
algorithm.

Visualization
In R there are two ways of seeing the result of the PAM algorithm, the first one is to print the object that the
algorithm returns, and the second one is to plot the data from the object creating a graphic of the result. The first way
of visualizing the information is a bit more complicated to understand but it gives a more complete and accurate
information, but the second way is a lot more easy to understand and let the user have a better view of the
information and to add information that wold be relevant for him.
To view the data of the result of the execution of PAM algorithm in a textual way there are two ways one more
simple that gives a more summarized information about the object, and another one that gives you a more complete
information about it. In the two commands listed below the first one print the information in a summarized way,
while the second one print it in a more complete way.

print (result)

summary (result)

The other way of visualizing the data from the result of the execution of the algorithm is using graphics and that can
be done by using the following command:

plot (result)
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Example: To show an example of use of the algorithm and a result from its execution it was used a simple dataset
with few entities and few dimension, as it is shown in the table as follows:
Table 1: Simple dataset

Object Attribute x Attribute y

1 1 1

2 2 3

3 1 2

4 2 2

5 10 4

6 11 5

7 10 6

8 12 5

9 11 6

As we can see the data is separated in two clusters, so we will use an k = 2. The PAM algorithm can be executed as
follows:

#load the table from a file

x <- read.table(“table.txt”)

#execute the pam algorithm with the dataset created for the example

result <- pam(x, 2, FALSE, "euclidean")

#print the results data in the screen

summary(result)

#plot a graphic showing the clusters and the medoids of each cluster

plot(result$data, col = result$clustering)

points(result$medoids, col = 1:2, pch = 4)

Printing the result form the execution gives you:

Medoids:

 ID  x y

4  4  2 2

6  6 11 5

Clustering vector:

1 2 3 4 5 6 7 8 9 

1 1 1 1 2 2 2 2 2 

Objective function:

  build     swap 

1.255618 0.915849 

Numerical information per cluster:

    size max_diss   av_diss diameter separation

[1,]    4 1.414214 0.8535534 2.236068   8.062258

[2,]    5 1.414214 0.9656854 2.236068   8.062258
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Isolated clusters:

 L-clusters: character(0)

 L*-clusters: [1] 1 2

Silhouette plot information:

 cluster neighbor sil_width

3       1        2 0.8898942

4       1        2 0.8788422

1       1        2 0.8549629

2       1        2 0.8297000

6       2        1 0.8790384

9       2        1 0.8631441

8       2        1 0.8425790

7       2        1 0.8232848

5       2        1 0.7747713

Average silhouette width per cluster:

[1] 0.8633498 0.8365635

Average silhouette width of total data set:

[1] 0.8484685

36 dissimilarities, summarized :

  Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

1.0000  1.4142  8.3951  6.1559  9.9362 11.7050 

Metric :  euclidean 

Number of objects : 9

Available components:

 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation"  "clusinfo"

   "silinfo"    "diss"       "call"      

[10] "data"

While plotting gives you:
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Case Study
In this section we will see a case study using PAM.

Scenario
In this case study it was used a part of the database iris available in the R package datasets. This famous (Fisher’s or
Anderson’s) iris data set gives the measurements in centimeters of the variables sepal length and width and petal
length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor,
and virginica. Using the data that this dataset provides us, it is natural to think of verifying if the flowers of each one
of three species of iris are really similar to the others from the same specie, so in this case study it will be used the
length and width of both petal and sepal to cluster the dataset into 3 groups and then verify if the clusters really
match with the flowers species.
The dataset that was used into this case study consist of the following columns:
• Flower: An id of the flower;
• Sepal.Length: A numeric value of the length of the sepal in centimeters;
• Sepal.Width: A numeric value of the width of the sepal in centimeters;
• Petal.Length: A numeric value of the length of the petal in centimeters;
• Petal.Width: A numeric value of the width of the petal in centimeters;
• Species: A text identifying the specie of the flower.

http://en.wikibooks.org/w/index.php?title=File:Hgrandrade_example.jpeg
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Input Data
The input data is a table consisting of 50% (75 entities) of the original iris dataset that have 150 flowers and 5
attributes each. So the dataset used in this case study is represented by the following table:
Table 2: Sample from iris dataset

Flower Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

11 5.4 3.7 1.5 0.2 setosa

12 4.8 3.4 1.6 0.2 setosa

13 4.8 3.0 1.4 0.1 setosa

14 4.3 3.0 1.1 0.1 setosa

15 5.8 4.0 1.2 0.2 setosa

16 5.7 4.4 1.5 0.4 setosa

17 5.4 3.9 1.3 0.4 setosa

18 5.1 3.5 1.4 0.3 setosa

19 5.7 3.8 1.7 0.3 setosa

20 5.1 3.8 1.5 0.3 setosa

21 5.4 3.4 1.7 0.2 setosa

22 5.1 3.7 1.5 0.4 setosa

23 4.6 3.6 1.0 0.2 setosa

24 5.1 3.3 1.7 0.5 setosa

25 4.8 3.4 1.9 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor

52 6.4 3.2 4.5 1.5 versicolor

53 6.9 3.1 4.9 1.5 versicolor

54 5.5 2.3 4.0 1.3 versicolor

55 6.5 2.8 4.6 1.5 versicolor

56 5.7 2.8 4.5 1.3 versicolor

57 6.3 3.3 4.7 1.6 versicolor

58 4.9 2.4 3.3 1.0 versicolor

59 6.6 2.9 4.6 1.3 versicolor
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60 5.2 2.7 3.9 1.4 versicolor

61 5.0 2.0 3.5 1.0 versicolor

62 5.9 3.0 4.2 1.5 versicolor

63 6.0 2.2 4.0 1.0 versicolor

64 6.1 2.9 4.7 1.4 versicolor

65 5.6 2.9 3.6 1.3 versicolor

66 6.7 3.1 4.4 1.4 versicolor

67 5.6 3.0 4.5 1.5 versicolor

68 5.8 2.7 4.1 1.0 versicolor

69 6.2 2.2 4.5 1.5 versicolor

70 5.6 2.5 3.9 1.1 versicolor

71 5.9 3.2 4.8 1.8 versicolor

72 6.1 2.8 4.0 1.3 versicolor

73 6.3 2.5 4.9 1.5 versicolor

74 6.1 2.8 4.7 1.2 versicolor

75 6.4 2.9 4.3 1.3 versicolor

101 6.3 3.3 6.0 2.5 virginica

102 5.8 2.7 5.1 1.9 virginica

103 7.1 3.0 5.9 2.1 virginica

104 6.3 2.9 5.6 1.8 virginica

105 6.5 3.0 5.8 2.2 virginica

106 7.6 3.0 6.6 2.1 virginica

107 4.9 2.5 4.5 1.7 virginica

108 7.3 2.9 6.3 1.8 virginica

109 6.7 2.5 5.8 1.8 virginica

110 7.2 3.6 6.1 2.5 virginica

111 6.5 3.2 5.1 2.0 virginica

112 6.4 2.7 5.3 1.9 virginica

113 6.8 3.0 5.5 2.1 virginica

114 5.7 2.5 5.0 2.0 virginica

115 5.8 2.8 5.1 2.4 virginica

116 6.4 3.2 5.3 2.3 virginica

117 6.5 3.0 5.5 1.8 virginica

118 7.7 3.8 6.7 2.2 virginica

119 7.7 2.6 6.9 2.3 virginica

120 6.0 2.2 5.0 1.5 virginica

121 6.9 3.2 5.7 2.3 virginica

122 5.6 2.8 4.9 2.0 virginica

123 7.7 2.8 6.7 2.0 virginica
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124 6.3 2.7 4.9 1.8 virginica

125 6.7 3.3 5.7 2.1 virginica

Execution
The process was done as follows:

#import data

data <- read.table(“sampleiris.txt”)

#execution

result <- pam(data[1:4], 3, FALSE, “euclidean”)

#print results

summary(result)

#plot clusters

plot (data, col = result$clustering)

#add the medoids to the plot

points(result$medoids, col = 1:3, pch = 4)

Output
The following data was printed as result of the execution:

Medoids:

    ID Sepal.Length Sepal.Width Petal.Length Petal.Width

8    8          5.0         3.4          1.5         0.2

64  39          6.1         2.9          4.7         1.4

103 53          7.1         3.0          5.9         2.1

Clustering vector:

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  22

  23  24  25  51  52  53  54  55  56 

  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

   1   1   1   2   2   2   2   2   2 

 57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75 101 102 103

 104 105 106 107 108 109 110 111 112 

  2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   3   2   3

   3   3   3   2   3   3   3   2   2 

113 114 115 116 117 118 119 120 121 122 123 124 125 

  3   2   2   3   3   3   3   2   3   2   3   2   3 

Objective function:

    build      swap 

0.7148339 0.6990539 

Numerical information per cluster:

     size max_diss   av_diss diameter separation

[1,]   25 1.236932 0.5137400 2.042058  1.9000000

[2,]   34 1.951922 0.8085343 2.727636  0.3741657
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[3,]   16 1.284523 0.7559609 2.147091  0.3741657 

Isolated clusters:

 L-clusters: [1] 1

 L*-clusters: character(0)

Silhouette plot information:

    cluster neighbor   sil_width

1         1        2  0.84941732

5         1        2  0.84830238

8         1        2  0.84812593

18        1        2  0.84784555

12        1        2  0.83221128

22        1        2  0.82890349

20        1        2  0.82456328

3         1        2  0.82337894

7         1        2  0.81910409

10        1        2  0.81662688

11        1        2  0.80769429

2         1        2  0.80592613

13        1        2  0.80278163

4         1        2  0.79810574

23        1        2  0.79482977

24        1        2  0.78999596

17        1        2  0.78539723

21        1        2  0.78454015

25        1        2  0.77452963

6         1        2  0.75995941

9         1        2  0.74605493

14        1        2  0.74277337

19        1        2  0.72082914

15        1        2  0.71581750

16        1        2  0.66155611

68        2        3  0.60036142

56        2        3  0.59753885

62        2        3  0.59698924

72        2        3  0.59691421

70        2        3  0.59514179

54        2        3  0.58507022

67        2        3  0.56989428

60        2        1  0.56350914

63        2        3  0.55592514

75        2        3  0.54720666

74        2        3  0.53971473

64        2        3  0.53757677

69        2        3  0.51098390

65        2        1  0.50762488
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107       2        3  0.48295375

55        2        3  0.46851074

52        2        3  0.46827948

59        2        3  0.44164146

66        2        3  0.42147865

71        2        3  0.41421605

73        2        3  0.41282512

122       2        3  0.40891392

120       2        3  0.40207904

57        2        3  0.39510378

114       2        3  0.37176468

124       2        3  0.34854822

102       2        3  0.33532624

61        2        1  0.32662688

58        2        1  0.20142024

51        2        3  0.19024422

115       2        3  0.16320750

53        2        3  0.11554863

112       2        3 -0.07433144

111       2        3 -0.07748205

103       3        2  0.59622203

106       3        2  0.59241159

108       3        2  0.58027197

110       3        2  0.56716967

123       3        2  0.56182697

121       3        2  0.55568135

119       3        2  0.53242285

118       3        2  0.52551154

125       3        2  0.51206488

105       3        2  0.49243542

101       3        2  0.45749953

113       3        2  0.44409513

109       3        2  0.37181492

117       3        2  0.26375026

116       3        2  0.21777715

104       3        2  0.21412781

Average silhouette width per cluster:

[1] 0.7931708 0.4153331 0.4678177

Average silhouette width of total data set:

[1] 0.5524757

2775 dissimilarities, summarized :

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

 0.1000  1.1136  2.5080  2.6329  3.9006  7.0852 

Metric :  euclidean 

Number of objects : 75
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Available components:

 [1] "medoids"    "id.med"     "clustering" "objective"  "isolation"  "clusinfo"

   "silinfo"    "diss"       "call"      

[10] "data"

And the following graphic was generated as well:

Analysis
After the execution of the algorithm and the analysis of the data it was possible to tell that the clusters was well
grouped and correlated with the species of each flower. In the data there was a total of 75 elements, 25 from Setosa
species, 25 from Versicolor species and 25 from Virginica species, and the algorithm clustered the elements from
Setosa as cluster 1, the ones from Versicolor as cluster 2 and the ones from Virginica as cluster 3. After verifying the
results we find that from 75 elements, 66 were correctly clustered, giving an error margin of 12%—which is a very
good result.

References
1.1. The R Development Core Team, R: A Language and Environment for Statistical Computing.
2.2. Kaufman, L., Rousseeuw, P. J., Clustering by Means of Medoids.

http://en.wikibooks.org/w/index.php?title=File:HgrandradeIris.jpeg
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CLUES

Introduction
Cluster analysis, the organization of patterns into clusters based on similarity (or dissimilarity) measures, is an
unsupervised technique widely applied to a broad range of disciplines. It has many applications in data mining, as
large data sets need to be partitioned into smaller and homogeneous groups. Clustering techniques have a wide use,
such as artificial intelligence, pattern recognition, economics, biology and marketing. Clustering techniques are
important, and its importance increases as the amount of data and processing power of computers increases.

clues: Nonparametric Clustering Based on Local Shrinking
The R package clues aims to provide an estimate of the number of clusters and, at the same time, obtain a partition of
data set via local shrinking. The shrinking procedure in clues is done by the mean-shift algorithm. It is also
influenced by the K-nearest neighbor approach, not using kernel functions. The value K starts with a small number
and increases gradually until the measure of strength, CH Index or Silhouette Index, is optimized. A major
contribution of the CLUES algorithm is its ability to identify and deal with irregular elements. To help validation of
the quality of the number of clusters and the clustering algorithm, five indices are available to support decision
making.

Algorithm
CLUES (CLUstEring based on local Shrinking) algorithm has three procedures:
1.1. Shinking
2.2. Partition
3.3. Determination of optimal K

Shrinking
For the shrinking procedure, the data set is calibrated in a way that pushes each data point towards its focal point, the
cluster center or mode of the probability density function. The number K is chosen iteratively and, due to the
robustness of the median, each data point moves to the element-wise median of the set. This median consists of its K
nearest neighbors according to dissimilarity measures, either Euclidean distance or Pearson Correlation.
For this process, a stopping rule needs to be set by the user, beyond which excess iterations will not be significant in
terms of accuracy. The mutual gaps in data are apparent after this shrinking procedure.

Partitioning
The partition procedure uses the calibrated data obtained from shrinking. This data is used in place of the original
data set. The partitioning starts by picking one arbitrary data point and replacing it by its nearest fellow point,
recording their distance. The same move is applied to this fellow point. The selection is without replacement. Once a
data point is picked for replacement, it is not picked again in that run. To separate the groups, the summation of the
mean distance and 1:5 times the intequartile range is introduced. Each new fellow surpass move creates a new group,
with a incremented group index.
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Optimal K
Optimal K calculation involves optimizing the strength measure index, either CH Index or Silhouette Index. A factor
f is introduced to improve the speed of computation. This factor is, by default, 0.05. Users may modify this factor,
but must be aware of the large computation time associated with large factors. The choice of K has little effect on
clustering result as long as it lies in a neighborhood of the optimal K. The factor 0.05 is chosen to minimize
additional computation that will not substantially affect the outcome.
To strengthen the power of the calculation, we initialize K to be fn and set the size of increment K to be fn for the
next iterations. We then use the calibrated data form the previous step as the new data.

Implementation
Instalation

R > install.packages("clues")

Usage

library("clues")

clues procedure

clues(y, n0, alpha, eps, itmax, K2.vec, strengthMethod, strengthIni, disMethod, quiet)

Parameters

• y: data matrix which is an R matrix object (for dimension > 1) or vector object (for dimension=1) with rows being
observations and columns being variables.

•• n0: a guess for the number of clusters. Default value is 5.
•• alpha: speed factor. Default set as 0.05.
• eps: a small positive number. A value is regarded as zero if it is less than ‘eps’. Default value is 1.0e-4.
•• itmax: maximum number of iterations allowed. Default is 20.
•• K2.vec: range for the number of nearest neighbors for the second pass of the iteration. Default is n0 (5).
• strengthMethod: specifies the preferred measure of the strength of the clusters (i.e., compactness of the clusters).

Two available methods are “sil” (Silhouette index) and “CH” (CH index).
•• strengthIni: initial value for the lower bound of the measure of the strength for the clusters. Any negative values

will do.
• disMethod: specification of the dissimilarity measure. The available measures are “Euclidean” and “1-corr”.
•• quiet: logical. Indicates if intermediate results should be output.
Values

This section lists the values that can be viewed when running clues.
•• K: number of nearest neighbors can be used to get final clustering.
•• size: vector of the number of data points for clusters.
•• mem: vector of the cluster membership of data points. The cluster membership takes values: 1, 2, ..., g, where g is

the estimated number of clusters.
•• g: an estimate of the number of clusters.
• CH: CH index value for the final partition if ‘strengthMethod’ is “CH”.
• avg.s: average of the Silhoutte index value for the final partition if ‘strengthMethod’ is “sil”.
• s: vector of Silhoutte indices for data points if ‘strengthMethod’ is “sil”.
•• K.vec: number of nearest neighbors used for each iteration.
•• g.vec: number of clusters obtained in each iteration.
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•• myupdate: logical. Indicates if the partition obtained in the first pass is the same as that obtained in the second
pass.

•• y.old1: data used for shrinking and clustering.
•• y.old2: data returned after shrinking and clustering.
•• y: a copy of the data from the input.
•• strengthMethod: a copy of the strengthMethod from the input.
•• disMethod: a copy of the dissimilarity measure from the input

Example
We will show an example of how to run clues using the Maronna data set. This set has 4 slightly overlapped clusters
in the two-dimensional space. Each cluster contains 50 data points. The Maronna data is a simulated data set. The
data are drawn from 4 bivariate normal distributions with identity covariance matrix and mean vectors μ = {(0,0),
(4,0), (1,6), (5,7)}.

R > data(Maronna)

R > maronna <- Maronna$maronna

R > res <- clues

R > res <- clues(maronna, quiet = TRUE) # run clues

The results are shown below

R > summary(res)

Number of data points:

[1] 200

Number of variables:

[1] 2

Number of clusters:

[1] 4

Cluster sizes:

[1] 53 47 50 50

Strength method:

[1] "sil"

avg Silhouette:

[1] 0.5736749

dissimilarity measurement:

[1] "Euclidean"

Plotting the results, we can see, in figure 1, the four clusters found by the clues algorithm.
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Self-Organizing Maps (SOM)

Introduction
The Kohonen Self-Organizing Feature Map (SOFM or SOM) is a clustering and data visualization technique based
on a neural network viewpoint. As with other types of centroid-based clustering, the goal of SOM is to find a set of
centroids (reference or codebook vector in SOM terminology) and to assign each object in the data set to the centroid
that provides the best approximation of that object. In neural network terminology, there is one neuron associated
with each centroid [1].
As with incremental K-means, data objects are processed one at a time and the closest centroid is updated. Unlike
K-means, SOM impose a topographic ordering on the centroids and nearby centroids are also updated. The
processing of points continues until some predetermined limit is reached or the centroids are not changing very
much. The final output of the SOM technique is a set of centroids that implicitly define clusters. Each cluster consist
of the points closest to a particular centroid .
SOM is a clustering technique that enforces neighborhood relationships on the resulting cluster centroids. Because of
this, clusters that are neighbors are more related to one another than clusters that are not. Such relationships facilitate
the interpretation and visualization of the clustering results. Indeed, this aspect of SOM has been exploited in many
areas, such as visualizing Web documents or gene array data.

Algorithm
A distinguishing feature of SOM is that it imposes a topographic(spacial) organization on the centroids (neurons).
Figure 1 shows an example of a two-dimensional SOM in which the centroids are represented by nodes that are
organized in a rectangular lattice. Each centroid is assigned a pair of coordinates(i,j). Sometimes, such a network is
drawn with links between adjacent nodes, but can be misleading because the influence of one centroid on another is
via a neighborhood that is defined in terms of coordinates, not links. There are many types of SOM neural networks,
but it will be focus on to two-dimensional SOMs with a rectangular or hexagonal organization of the centroids.

http://www.dcc.ufmg.br/miningalgorithms/DokuWiki/doku.php
http://cran.r-project.org/web/packages/cluster/index.html
http://www.stat.ubc.ca/~ruben/website/cv/clues.pdf
http://www.stat.ubc.ca/~ruben/website/cv/clues.pdf
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Figure 1: Two-dimensional 3-by-3 rectangular SOM neural network .

Even though SOM is similar to K-means, there is a fundamental difference. Centroids used in SOM have a
predetermined topographic ordering relationship. During the training process, SOM uses each data point to update
the closest centroid and centroids that are nearby in the topographic ordering. In this way, SOM produces an ordered
set of centroids for any given data set. In other words, the centroids that are close to each other in the SOM grid are
more closely related to each other than to the centroids that are farther away. Because of this constraint, the centroids
of a two-dimensional SOM can be viewed as lying on a two-dimensional surface that tries to fit the n-dimensional
data as well as possible. The SOM centroids can also be thought of as the result of a nonlinear regression with
respect to the data points. At a high level, clustering using the SOM technique consists of the steps described in
Algorithm below:

1: Initialize the centroids.

2: repeat

3:    Select the next object.

4:    Determine the closest centroid to the object.

5:    Update this centroid and the centroids that are close, i.e., in a specified neighborhood.

6: until The centroids don't change much or a threshold is exceeded.

7: Assign each object to its closest centroid and return the centroids and clusters.

Implementation
For R [2] (R Development Core Team 2007), three packages are available from the Comprehensive R Archive
Network (CRAN [3]) implementing standard SOMs [4]

• The kohonen package implements self-organizing maps as well as some extensions for supervised pattern
recognition and data fusion.

• The som package provides functions for self-organizing maps.
• The wccsom package SOM networks for comparing patterns with peak shifts.
For this discussion the focus is on the kohonen package because it gives SOM standards features and order 
extensions. The R package kohonen provides functions for self-organizing maps. It also provides two extensions that 
allow the use of SOMs for classification and regression tasks as well as data mining tasks. It specifically emphasizes 
visualisation. The basic functions are: som for the usual unsupervised form of self-organizing maps; xyf for 
supervised self-organizing maps and X-Y fused maps, which are useful when additional information in the form of, 
e.g., a class variable is available for all objects; bdk, an alternative formulation called bi-directional Kohonen maps; 
and finally, from version 2.0.0 on, the generalisation of the xyf maps to more than two layers of information, in the

http://en.wikibooks.org/w/index.php?title=File:Som_neural_network.png
http://www.r-project.org/
http://CRAN.R-project.org/
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function supersom. These functions can be used to define the mapping of the objects in the training set to the units
of the map [5].
Several data sets are included in the kohonen package: the wine data from the UCI Machine Learning Repository
[6][7], near-infrared spectra from ternary mixtures of ethanol, water and iso-propanol, measured at different
temperatures described by Wülfert et al. (1998) [8], and finally a set of microarray data, the yeast data from Spellman
et al. (1998)[9]. The wine data set contains information on a set of 177 Italian wine samples from three different
grape cultivars; thirteen variables (such as concentrations of alcohol and flavonoids, but also color hue) have been
measured. The yeast data are a subset of the original set containing 6178 genes, which are assumed to be related to
the yeast cell cycle. The set contains 800 genes for which, using six different synchronization methods,
time-dependent expressions have been measured .
The different types of self-organizing maps can be obtained by calling the functions som, xyf, bdk, or supersom,
with the appropriate data representation as the first argument(s). Several other arguments provide additional
parameters, such as the map size, the number of iterations, etcetera. The object that is returned can then be used for
inspection, plotting, mapping, and prediction. Below we will show the functions available in the package.
Visualization functions will be discussed at Visualization topic .

Function som
Function som implement the standard form of self-organizing maps [10].

som(data, grid=somgrid(), rlen = 100, alpha = c(0.05, 0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), init, 

toroidal = FALSE, n.hood,  keep.data = TRUE)  

the arguments are:
• data: a matrix, with each row representing an object.
• grid: a grid for the representatives.
• rlen: the number of times the complete data set will be presented to the network.
• alpha: learning rate, a vector of two numbers indicating the amount of change. Default is to decline linearly from

0.05 to 0.01 over rlen updates.
• radius: the radius of the neighbourhood, either given as a single number or a vector (start, stop). If it is given as a

single number the radius will run from the given number to the negative value of that number; as soon as the
neighbourhood gets smaller than one only the winning unit will be updated. The default is to start with a value
that covers 2/3 of all unit-to-unit distances.

• init: the initial representatives, represented as a matrix. If missing, chosen (without replacement) randomly from
’data’.

• toroidal: if TRUE, the edges of the map are joined. Note that in a hexagonal toroidal map,the number of rows
must be even.

• n.hood: the shape of the neighbourhood, either "circular" or "square". The latter is the default for rectangular
maps, the former for hexagonal maps.

• keep.data: save data in return object.
return an object of class "kohonen" with components:
• data: data matrix, only returned if keep.data == TRUE.
• grid: the grid, an object of class "somgrid".
• codes: a matrix of code vectors.
• changes: vector of mean average deviations from code vectors.
• unit.classif: winning units for all data objects, only returned if keep.data == TRUE.
• distances: distances of objects to their corresponding winning unit, only returned if keep.data == TRUE.
• toroidal: whether a toroidal map is used.

http://kdd.ics.uci.edu
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• method: the type of som, here "som".

Function xyf
Function xyf is a supervised version of self-organizing maps for mapping high-dimensional spectra or patterns to 2D
.

xyf(data, Y, grid=somgrid(), rlen = 100, alpha = c(0.05, 0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), 

xweight = 0.5, contin,  toroidal = FALSE, n.hood, keep.data = TRUE)

the arguments are:
• data: a matrix, with each row representing an object.
• Y: property that is to be modelled. In case of classification, Y is a matrix of zeros, with exactly one ’1’ in each

row indicating the class. For prediction of continuous properties, Y is a vector. A combination is possible, too, but
one then should take care of appropriate scaling.

• grid: a grid for the representatives.
• rlen: the number of times the complete data set will be presented to the network.
• alpha: learning rate, a vector of two numbers indicating the amount of change. Default is to decline linearly from

0.05 to 0.01 over rlen updates.
• radius: the radius of the neighbourhood, either given as a single number or a vector start, stop). If it is given as a

single number the radius will run from the given number to the negative value of that number; as soon as the
neighbourhood gets smaller than one only the winning unit will be updated. The default is to start with a value
that covers 2/3 of all unit-to-unit distances.

• xweight: the weight given to the X map in the calculation of distances for updating Y. Default is 0.5.
• contin: parameter indicating whether Y is continuous or categorical. The default is to check whether all row sums

of Y equal 1: in that case contin is FALSE.
• toroidal: if TRUE, the edges of the map are joined. Note that in a hexagonal toroidal map, the number of rows

must be even.
• n.hood: the shape of the neighbourhood, either "circular" or "square". The latter is the default for rectangular

maps, the former for hexagonal maps.
• keep.data: save data in return value.
return an object of class "kohonen" with components:
• data: data matrix, only returned if keep.data == TRUE.
• Y: Y, only returned if keep.data == TRUE.
• contin: parameter indicating whether Y is continuous or categorical.
• grid: the grid, an object of class "somgrid".
• codes: list of two matrices, containing codebook vectors for X and Y, respectively.
• changes: matrix containing two columns of mean average deviations from code vectors. Column 1 contains

deviations used for updating Y; column 2 for updating X.
• toroidal: whether a toroidal map is used.
• unit.classif: winning units for all data objects, only returned if keep.data == TRUE.
• distances: distances of objects to their corresponding winning unit, only returned if keep.data == TRUE.
• method: the type of som, here "xyf".
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Function bdk
Supervised version of self-organising maps for mapping high-dimensional spectra or patterns to 2D: the
Bi-Directional Kohonen map .

bdk(data, Y, grid=somgrid(), rlen = 100, alpha = c(0.05, 0.01), radius = quantile(nhbrdist,0.67)

* c(1, -1), xweight = 0.75, contin, toroidal = FALSE, n.hood, keep.data = TRUE)

the arguments are:
• data: a matrix, with each row representing an object.
• Y: property that is to be modelled. In case of classification, Y is a matrix with exactly one ’1’ in each row

indicating the class, and zeros elsewhere. For prediction of continuous properties, Y is a vector. A combination is
possible, too, but one then should take care of appropriate scaling.

• grid: a grid for the representatives.
• rlen: the number of times the complete data set will be presented to the network.
• alpha: learning rate, a vector of two numbers indicating the amount of change. Default is to decline linearly from

0.05 to 0.01 over rlen updates.
• radius: the radius of the neighbourhood, either given as a single number or a vector (start, stop). If it is given as a

single number the radius will run from the given number to the negative value of that number; as soon as the
neighbourhood gets smaller than one only the winning unit will be updated. The default is to start with a value
that covers 2/3 of all unit-to-unit distances.

• xweight: the initial weight given to the X map in the calculation of distances for updating Y, and to the Y map for
updating X. This will linearly go to 0.5 during training. Defaults to 0.75.

• contin: parameter indicating whether Y is continuous or categorical. The default is to check whether all row sums
of Y equal 1: in that case contin is FALSE.

• toroidal: if TRUE, the edges of the map are joined. Note that in a hexagonal toroidal map, the number of rows
must be even.

• n.hood: the shape of the neighbourhood, either "circular" or "square". The latter is the default for rectangular
maps, the former for hexagonal maps.

• keep.data: save data in return value.
return an object of class "kohonen" with components:
• data: data matrix, only returned if keep.data == TRUE.
• Y: Y, only returned if keep.data == TRUE.
• contin: parameter indicating whether Y is continuous or categorical.
• grid: the grid, an object of class "somgrid".
• codes: list of two matrices, containing codebook vectors for X and Y, respectively.
• changes: matrix containing two columns of mean average deviations from code vectors. Column 1 contains

deviations used for updating Y; column 2 for updating X.
• toroidal: whether a toroidal map is used.
• unit.classif: winning units for all data objects, only returned if keep.data == TRUE.
• distances: distances of objects to their corresponding winning unit, only returned if keep.data== TRUE.
• method: the type of som, here "bdk".
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Function supersom
An extension of xyf maps to multiple data layers, possibly with different numbers of variables (though equal
numbers of objects) .
supersom(data, grid=somgrid(), rlen = 100, alpha = c(0.05, 0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), contin, 

toroidal = FALSE,  n.hood, whatmap = NULL, weights = 1, maxNA.fraction = .5, keep.data = TRUE)

the arguments are:
• data: list of data matrices.
• grid: a grid for the representatives: see somgrid.
• rlen: the number of times the complete data set will be presented to the network.
• alpha: learning rate, a vector of two numbers indicating the amount of change. Default is to decline linearly from

0.05 to 0.01 over rlen updates.
• radius: the radius of the neighbourhood, either given as a single number or a vector (start, stop). If it is given as a

single number the radius will run from the given number to the negative value of that number; as soon as the
neighbourhood gets smaller than one only the winning unit will be updated. The default is to start with a value
that covers 2/3 of all unit-to-unit distances.

• contin: parameter indicating whether data are continuous or categorical. The default is to check whether all row
sums equal 1: in that case contin is FALSE.

• toroidal: if TRUE, the edges of the map are joined. Note that in a hexagonal toroidal map, the number of rows
must be even.

• n.hood: the shape of the neighbourhood, either "circular" or "square". The latter is the default for rectangular
maps, the former for hexagonal maps.

• whatmap: For supersom maps: what layers to use in the mapping.
• weights: the weights given to individual layers. Default is 1/n, with n the number of layers.
• maxNA.fraction: the maximal fraction of values that may be NA to prevent the row or column to be removed.
• keep.data: save data in return value.
return an object of class "kohonen" with components:
• data: data matrix, only returned if keep.data == TRUE.
• contin: parameter indicating whether elements of data are continuous or categorical.
• na.rows: indices of objects (rows) that are removed because at least one of the layers has to many NAs for these

objects.
• unit.classif: winning units for all data objects, only returned if keep.data == TRUE.
• distances: distances of objects to their corresponding winning unit, only returned if keep.data == TRUE.
• grid: the grid, an object of class somgrid.
• codes: a list of matrices containing codebook vectors.
• changes: matrix of mean average deviations from code vectors; every map corresponds with one column.
• toroidal: whether a toroidal map is used.
• n.hood: the shape of the neighbourhood, either "circular" or "square". The latter is the
•• default for rectangular maps, the former for hexagonal maps.
• weights: For supersom maps: weights of layers uses in the mapping.
• whatmap: For supersom maps: what layers to use in the mapping.
• method: type of map, here "supersom".
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Function predict.kohonen
Map objects to a trained Kohonen map, and return for each object the property associated with the corresponding
winning unit .

## S3 method for class 'kohonen':

predict(object, newdata, trainX, trainY, unit.predictions, threshold = 0, whatmap = NULL, weights = 1, ...)

the arguments are:
• object: Trained network.
• newdata: Data matrix for which predictions are to be made. If not given, defaults to the training data (when

available).
• trainX: Training data for obtaining predictions for unsupervised maps; necessary for som maps trained with the

keep.data = FALSE option.
• trainY: Values for the dependent variable for the training data; necessary for som and supersom maps.
• unit.predictions: Possible override of the predictions for each unit.
• threshold: Used in class predictions; see classmat2classvec.
• whatmap: For supersom maps: what layers to use in the mapping.
• weights: For supersom maps: weights of layers uses in the mapping.
• ...: Currently not used.
returns a list with components:
• prediction: predicted values for the properties of interest. When multiple values are predicted, this element is a

list, otherwise a vector or a matrix.
• unit.classif: unit numbers to which objects in the data matrix are mapped.
• unit.predictions: mean values associated with map units. Again, when multiple properties are predicted, this is a

list.

Function classvec2classmat
Convert a classification vector into a matrix or the other way around .

classvec2classmat(yvec)

classmat2classvec(ymat, threshold=0)

the arguments are:
• yvec: class vector. Usually integer values, but other types are also allowed.
• ymat: class matrix: every column corresponds to a class.
• threshold: only classify into a class if the probability is larger than this threshold.
return:
• classvec2classmat: returns the classification matrix, where each column consists of zeros and ones.
• classmat2classvec: returns a class vector (integers).
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Function check.whatmap
Check the validity of a whatmap argument .

check.whatmap(x, whatmap)

the arguments are:
• x: Either a kohonen object from supersom, or a list of data matrices that can be used as input data for supersom.
• whatmap: An indication of a subset of the data; either by naming the elements, or giving indices. If whatmap

equals NULL, no selection is performed.
Returns:
•• Returns a numerical vector with the indices of the selected layers.

Function map.kohonen
Map a data matrix onto a trained SOM .

## S3 method for class 'kohonen':

map(x, newdata, whatmap = NULL, weights, scale.distances = (nmaps > 1), ...)

the arguments are:
• x: A trained supervised or unsupervised SOM obtained from functions som, xyf or bdk.
• newdata: Data matrix, with rows corresponding to objects.
• whatmap: For supersom maps: the layers to take into account.
• weights: For supersom maps: weights of the layers that are used for mapping.
• scale.distances: whether to rescale distances per layer in the case of supersom maps (default): if TRUE the

maximal distance of each layer equals one. If the absolute values of the distances per layer should be used, this
argument should be set to FALSE. Note that in that case, when mapping the training data, the result returned by
map.kohonen will differ from the mapping present in the map.

• ...: Currently ignored.
return a list with elements:
• unit.classif: a vector of units that are closest to the objects in the data matrix.
• dists: distances (currently only Euclidean distances) of the objects to the units.
• whatmap,weights,scale.distances: Values used for these arguments.

Function unit.distances
Calculate distances between units in a SOM .

unit.distances(grid, toroidal)

the arguments are:
• grid: an object of class somgrid.
• toroidal: if true, edges of the map are joined so that the topology is that of a torus.
return:
•• Returns a (symmetrical) matrix containing distances. When grid$n.hood equals "circular", Euclidean distances are

used; for grid$n.hood is "square" maximum distances. If toroidal equals TRUE, maps are joined at the edges and
distances are calculated for the shortest path.
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Function tricolor
Function provides colour values for SOM units in such a way that the colour changes smoothly in every direction .

tricolor(grid, phis = c(0, 2 * pi/3, 4 * pi/3), offset = 0)

the arguments are:
• grid: An object of class somgrid, such as the grid element in a kohonen object.
• phis: A vector of three rotation angles. Values for red, green and blue are given by the y-coordinate of the units

after rotation with these three angles, respectively. The default corresponds to (approximate) red colour of the
middle unit in the top row, and pure green and blue colours in the bottom left and right units, respectively. In case
of a triangular map, the top unit is pure red.

• offset: Defines the minimal value in the RGB colour definition (default is 0). By supplying a value in the range
[0, .9], pastel-like colours are provided.

return:
•• Returns a matrix with three columns corresponding to red, green and blue. This can be used in the rgb function to

provide colours for the units.

View
After the training phase, one can use several plotting functions for the visualisation; the package can show where
objects are mapped, has several options for visualizing the codebook vectors of the map units, and provides means to
assess the training progress. Summary functions exist for all SOM types. Furthermore, one can easily project new
data into the trained map; this provides possibilities for property estimation .

Functions summary and print
Summary and print methods for kohonen objects. The print method shows the dimensions and the topology of the
map; if information on the training data is included, the summary method additionally prints information on the size
of the data and the mean distance of an object to its closest codebookvector, which is an indication of the quality of
the mapping .

## S3 method for class 'kohonen':

summary(object, ...)

## S3 method for class 'kohonen':

print(x, ...)

the arguments are:
• x, object: a kohonen object
• ...: Not used.
return

Figure 2: Information retorned by function print about wine data

http://en.wikibooks.org/w/index.php?title=File:Print_wine.png
http://en.wikibooks.org/w/index.php?title=File:Summary_wine.png
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Figure 3: Information retorned by function summary about wine data

Function plot.kohonen
Plot self-organising map, obtained from function kohonen. Several types of plots are supported .
## S3 method for class 'kohonen':

plot(x, type = c("codes", "changes", "counts", "dist.neighbours", "mapping", "property", "quality"), classif = NULL, 

labels = NULL, pchs =  NULL, main = NULL, palette.name = heat.colors, ncolors, bgcol = NULL, zlim = NULL, heatkey = TRUE, 

property, contin, whatmap = NULL, codeRendering = NULL, keepMargins = FALSE, heatkeywidth = .2, ...)

the arguments are:
• x: kohonen object.
• type: type of plot.
• classif: classification object, as returned by predict.kohonen, or vector of unit numbers. Only needed if type

equals "mapping" and "counts".
• labels: labels to plot when type equals "mapping".
• pchs: symbols to plot when type equals "mapping".
• main: title of the plot.
• palette.name: colors to use as unit background for "codes", "counts", "prediction", "property", and "quality"

plotting types.
• ncolors: number of colors to use for the unit backgrounds. Default is 20 for continuous data, and the number of

distinct values (if less than 20) for categorical data.
• bgcol: optional argument to colour the unit backgrounds for the "mapping" and "codes" plotting type. Defaults to

"gray" and "transparent" in both types, respectively.
• zlim: optional range for color coding of unit backgrounds.
• heatkey: whether or not to generate a heatkey at the left side of the plot in the "property" and "counts" plotting

types.
• property: values to use with the "property" plotting type.
• contin: whether or not the data should be seen as discrete (i.e. classes) or continuous in nature. Only relevant for

the colour keys of plots of supervised networks.
• whatmap: For supersom maps and a "codes" plot: what maps to show.
• codeRendering: How to show the codes. Possible choices: "segments", "stars" and "lines".
• keepMargins: if FALSE (the default), restore the original graphical parameters after plotting the kohonen map. If

TRUE, one retains the map coordinate system so that one can add symbols to the plot, or map unit numbers using
the identify function.

• Heatkeywidth: width of the colour key; the default of 0.2 should work in most cases but in some cases, e.g. when
plotting multiple figures, it may need to be adjusted.

• ...: other graphical parameters, e.g. colours of labels, or plotting symbols, in the "mapping" plotting type.
Several different types of plots are supported:
• "changes": shows the mean distance to the closest codebook vector during training.
• "codes": shows the codebook vectors.
• "counts": shows the number of objects mapped to the individual units. Empty units are depicted in gray.
• "dist.neighbours": shows the sum of the distances to all immediate neighbours. This kind of visualization is also

known as a U-matrix plot. Units near a class boundary can be expected to have higher average distances to their
neighbours. Only available for the "som" and "supersom" maps, for the moment.

• "mapping": shows where objects are mapped. It needs the "classif" argument, and a "labels" or "pchs" argument.
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• "property": properties of each unit can be calculated and shown in colour code. It can be used to visualise the
similarity of one particular object to all units in the map, to show the mean similarity of all units and the objects
mapped to them, etcetera. The parameter property contains the numerical values.

• "quality": shows the mean distance of objects mapped to a unit to the codebook vector of that unit. The smaller
the distances, the better the objects are represented by the codebook vectors.

return:

Figure 4: Left Plot the function was called with type "counts". Right Plot the function was called with type "quality" .

Figure 5: The function Plot was called with type "property" .

http://en.wikibooks.org/w/index.php?title=File:Plot_NIR_data.png
http://en.wikibooks.org/w/index.php?title=File:Plot_predict_water.png
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Figure 6: The function Plot was called with type "codes" .

Figure 7: The function Plot was called with type "mapping" .

http://en.wikibooks.org/w/index.php?title=File:Plot_Codes.png
http://en.wikibooks.org/w/index.php?title=File:Plot_Mapping_All.png
http://en.wikibooks.org/w/index.php?title=File:Plot_Training_Process.png
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Figure 8: The function Plot was called with type "changes" .

Case Study
In this section, we illustrate a case study using package Kohonen.

Scenario
The standard form of self-organizing maps is implemented in function som. To map the 177-sample wine data set to
a map of five-by-four hexagonally oriented units, the som function can be used. First, we load the package (from
now on, we assume the package is loaded), and then the data, which are subsequently autoscaled because of the
widely different ranges (especially the proline concentration, variable 13, deviates). The fourteenth variable is a class
variable and is not used in the mapping; it will be used later for visualisation purposes .

Input data
As the input data we use de dataset wine that are included in the kohonen package. The dataset containing 177 rows
and thirteen columns; object vintages contains the class labels. For compatibility with older versions of the package,
variable wine.classes is retained, too. These data are the results of chemical analyses of wines grown in the same
region in Italy (Piedmont) but derived from three different cultivars: Nebbiolo, Barberas and Grignolino grapes. The
wine from the Nebbiolo grape is called Barolo. The data contain the quantities of several constituents found in each
of the three types of wines, as well as some spectroscopic variables .

Execution
The following code can be use to create the map from the dataset. Note that first of all, you have to load the package
and then load the dataset.

> library("kohonen")

Loading required package: class

> data("wines")

> wines.sc <- scale(wines)

> set.seed(7)

> wine.som <- som(data = wines.sc, grid = somgrid(5, 4, "hexagonal"))

> plot(wine.som, main = "Wine data")
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Output
The result is shown in Figure 9. The codebook vectors are visualized in a segments plot, which is the default plotting
type. High alcohol levels, for example, are associated with wine samples projected in the bottom right corner of the
map, while color intensity is largest in the bottom left corner .

Figure 9: A plot of the codebook vectors of the 5-by-4 mapping of the wine data .

Analysis
The result of the training, the wine.som object, is a list. The most important element is the codes element, which
contains the codebook vectors as rows. Another element worth inspecting is changes, a vector indicating the size of
the adaptions to the codebook vectors during training. This can be used to assess whether the number of iterations is
sufficient .

Extra
An example using the NIR data included in the package is shown below: for every ternary mixture, we have a
nearinfrared spectrum, as well as concentrations of the three chemical compounds (summing to 1). Moreover, every
sample is measured at five different temperatures. The aim in the example below is to model the water content (the
second of the three concentrations). Of the three chemicals, water has the largest effect on the NIR spectra. We start
by loading the data and attaching the data frame so that objects spectra, composition and temperature become
directly available. Parameter xweight indicates how much importance is given to X; here it is set to 0.5 (X and Y are
equally important), also the default value in xyf .

> data("nir")

> attach(nir)

> set.seed(13)

> nir.xyf <- xyf(data = spectra, Y = composition[,2], xweight = 0.5, grid = somgrid(6, 6, "hexagonal"))

http://en.wikibooks.org/w/index.php?title=File:Plot_wine_data.png
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> par(mfrow = c(1, 2))

> plot(nir.xyf, type = "counts", main = "NIR data: counts")

> plot(nir.xyf, type = "quality", main = "NIR data: mapping quality")

This leads to the output shown in Figure 4. In the left plot, the background color of a unit corresponds to the number
of samples mapped to that particular unit; they are reasonably spread out over the map. Four of the units are empty:
no samples have been mapped to them. The right plot shows the mean distance of objects, mapped to a particular
unit, to the codebook vector of that unit. A good mapping should show small distances everywhere in the map .
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Proximus
With the availability of large-scale computing platforms for high-fidelity design and simulations, and
instrumentation for gathering scientific as well as business data, increased emphasis is being placed on efficient
techniques for analyzing large and extremely high-dimensional data sets. These data sets may comprise discrete
attributes, such as those from business processes, information retrieval, and bioinformatics, as well as continuous
attributes such as those in scientific simulations, astrophysical measurements, and engineering design.
Analysis of high-dimensional data typically takes the form of extracting correlations between data items, discovering
meaningful information in data, clustering data items, and finding efficient representations for clustered data,
classification, and event association. Since the volume (and dimensionality) of data is typically large, the emphasis
of new algorithms must be on efficiency and scalability to large data sets.

Technique/Algorithm
In this section, we focus on Proximus. The intended area of application is the compression of high-dimensional
binary data into representative patterns. For instance, purchase incidence (market basket data) or term-document
matrices may be preprocessed by Proximus for later association rule mining. In the next subsection, we give a brief
explanation of how the algorithm works.

Algorithm
The Proximus algorithm cluster the rows of a logical matrix. The compression rate of the algorithm can be
influenced by the choice of the maximum cluster radius and the minimum cluster size.
The algorithm is of a recursive partitioning type. Specifically, at each step a binary split is attempted using a local
rank-one approximation of the current submatrix (row set). That is a specialization of principal components to binary
data which represents a matrix as the outer product of two binary vectors. The node expansion stops if a submatrix is
pure, i.e., the column (presence set) vector indicates all the rows and the Hamming distances from the row (dominant
attribute set) pattern vector, or the size of the row set, are less than or equal the specified threshold. In the case the
rank-one approximation does not result in a split but the radius constraint is violated, the matrix is split using a
random row and the radius constraint.
The figure shows the recursive structure of proximus, where A represents the original data matrix. Each rectangular
internal node is a rank-one approximation and two circular children of these nodes are the matrices that result from
partitioning of parent matrix based on this approximation. Leaves of the recursion tree correspond to final
decomposition. The overall decomposition is , where and

.

Implementation
Proximus is part of cba package. In this section you find more information about installing and using it on R
Environment.
Type the following command in R console to install cba package

install.packages("cba")

Type the following command in R console to load the package

library("cba")

The Proximus function, provided by the cba package, might be used as follow
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proximus(x, max.radius = 2, min.size = 1, min.retry = 10, max.iter = 16, debug = FALSE) 

where arguments are:

x: a logical matrix. 

max.radius: the maximum number of bits a member in a row set may deviate from its dominant pattern. 

min.size: the minimum split size of a row set. 

min.retry: number of retries to split a pure rank-one approximation (translates into a resampling rate). 

max.iter: the maximum number of iterations for finding a local rank-one approximation. 

debug: optional debugging output.

An object of class proximus with the following components:

nr: the number of rows of the data matrix.

nc: the number of columns of the data matrix.

a: a list containing the approximations (patterns).

a$x: a vector of row (presence set) indexes.

a$y: a vector of column (dominant attribute set) indexes.

a$n: the number of ones in the approximated submatrix.

a$c: the absolute error reduction by the approximation.

max.radius: see arguments.

min.size: see arguments.

rownames: rownames of the data matrix.

colnames: colnames of the data matrix.

View
There is one way to show the result from this algorithm. That way would be typing:

summary(ProximusObject)

Example

Here we have an example of proximus algorithm processing. The example is quite simple and gives an idea of how it
works. Basically, a uniform logical matrix is generated. Then proximus does a rank-4 aproximattion of original
logical matrix.

x <- rlbmat() 

pr <- proximus(x, max.radius=8, debug=TRUE) 

op <- par(mfrow=c(1,2), pty="s") 

lmplot(x, main="Data") 

box() 

lmplot(fitted(pr)$x, main="Approximation") 

box() 

par(op) 

Output
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Case Study
In this section, we illustrate a case study with Proximus:

Scenario
In this section, we use PROXIMUS to cluster terms in hypothetical database to extract semantic information. It
means, we want to know what are the main subjects of documents.
Suppose there's a library with some documents and we want to divide these documents in categories. We can
describe each document as a set of words that occurs on that document.

http://en.wikibooks.org/w/index.php?title=File:Proximus2.jpg
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Data
We represent the data as a binary term-document matrix by mapping terms to rows and columns to documents, so
that a TRUE entry in the matrix indicates the existence of a word in the corresponding document.
The table below shows 14 terms and 10 documents. Clearly, there are two groups of words: those that are related to
computers and those that are related to authors. The word love is isolated.

Execution
R Code:

x <- matrix(scan("matriz.txt",what=logical(0),n = 14*10), 14, 10, byrow = TRUE)

pr <- proximus(x, max.radius=8, debug = TRUE)

summary(pr)

Output
The result of clustering the matrix of terms and documents is shown below:

http://en.wikibooks.org/w/index.php?title=File:Proximus3.png
http://en.wikibooks.org/w/index.php?title=File:Proximus4.png
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Analysis
As you can see in the output, there's a table with the result of clustering. Clearly, there are three groups of words
(each line). The first group is related to computers. The second one is related to authors. The third group represents
the isolated word love. The column named size indicates how many words belongs to the same group. Proximus
algorithm clustered the words as follows: Group 1 (computers) = {intel, computer, software, linux, windows,
Firefox, explorer, programming} Group 2 (authors) = {kuth, shakespeare, grisham, asimov, book} Group 3 (noise) =
{love}

References
1. Meira Jr., W.; Zaki, M. Fundamentals of Data Mining Algorithms. [1]
2. CBA R package. [1]
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pages 147-156, 2003.

CLARA
An obvious way of clustering larger datasets is to try and extend existing methods so that they can cope with a larger
number of objects. The focus is on clustering large numbers of objects rather than a small number of objects in high
dimensions. Kaufman and Rousseeuw (1990) suggested the CLARA (Clustering for Large Applications) algorithm
for tackling large applications. CLARA extends their k-medoids approach for a large number of objects. It works by
clustering a sample from the dataset and then assigns all objects in the dataset to these clusters.
Technique To Be Discussed
This work is focused on CLARA, a technique for clustering largers datasets.

Algorithm

Symbols Definitions

D Data set to be clustered

n Number of objects in D

O_i Object i in D

k Number of clusters

S A sample of D

s Size of S

Table 1: Summary of symbols and definitions
CLARA (CLustering LARge Applications) relies on the sampling approach to handle large data sets. Instead of
finding medoids for the entire data set, CLARA draws a small sample from the data set and applies the PAM
algorithm to generate an optimal set of medoids for the sample. The quality of resulting medoids is measured by the
average dissimilarity between every object in the entire data set D and the medoid of its cluster, defined as the
following cost function:

http://www.dcc.ufmg.br/miningalgorithms/DokuWiki/doku.php
http://cran.r-project.org/web/packages/cba/index.html
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where M is a set of selected medoids, dissimilarity(Oi, Oj) is the dissimilarity between objects Oi and Oj, and rep(M,
Oi) returns a medoid in M which is closest to Oi.
To alleviate sampling bias, CLARA repeats the sampling and clustering process a pre-defined number of times and
subsequently selects as the final clustering result the set of medoids with the minimal cost. Assume q to be the
number of samplings. The CLARA algorithm is detailed in Figure 1.

Figure 1: Clara Algorithm
Since CLARA adopts a sampling approach, the quality of its clustering results depends greatly on the size of the
sample. When the sample size is small, CLARA’s efficiency in clustering large data sets comes at the cost of
clustering quality.

Implementation
In order to use the CLARA algorithm in R, one must install cluster package. This package includes a function that
performs the CLARA process.
Install cluster package

install.packages("cluster")

Import Contents

library("cluster")

The CLARA function, provided by the cluster package, might be used as follow:
clara(x, k, metric = "euclidean", stand = FALSE, samples = 5, sampsize = min(n, 40 + 2 * k), trace = 0, medoids.x = TRUE, 

keep.data = medoids.x, rngR = FALSE)

where the arguments are:
• x: Data matrix or data frame, each row corresponds to an observation, and each column corresponds to a variable.

All variables must be numeric. Missing values (NAs) are allowed.
• k: Integer, the number of clusters. It is required that 0 < k < n where n is the number of observations (i.e., n =

nrow(x)).
• metric: Character string specifying the metric to be used for calculating dissimilarities between observations. The

currently available options are "euclidean" and "manhattan". Euclidean distances are root sum-of-squares of
differences, and manhattan distances are the sum of absolute differences.

• stand: Logical, indicating if the measurements in x are standardized before calculating the dissimilarities.
Measurements are standardized for each variable (column), by subtracting the variable's mean value and dividing
by the variable's mean absolute deviation.

• samples: Integer, number of samples to be drawn from the dataset.
• sampsize: Integer, number of observations in each sample. sampsize should be higher than the number of clusters

(k) and at most the number of observations (n = nrow(x)).
• trace: Integer indicating a trace level for diagnostic output during the algorithm.
• medoids.x: Logical indicating if the medoids should be returned, identically to some rows of the input data x. If

FALSE, keep.data must be false as well, and the medoid indices, i.e., row numbers of the medoids will still be
returned (i.med component), and the algorithm saves space by needing one copy less of x.

• keep.data: Logical indicating if the (scaled if stand is true) data should be kept in the result. Setting this to 
FALSE saves memory (and hence time), but disables clusplot()ing of the result. Use medoids.x = FALSE to save
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even more memory.
• rngR: Logical indicating if R's random number generator should be used instead of the primitive clara()-builtin

one. If true, this also means that each call to clara() returns a different result – though only slightly different in
good situations.

View
There are actually two ways of viewing the result of a CLARA use. Both of them use the object of class clara
returned by the function application.
The first way is to plot the object, creating a chart that represents the data. Thus, if there are N objects divided into K
clusters, the chart must contain N points representing the objects, and those points must be colored in K different
colors, each one representing a cluster set. For example, given the object clarax, which is a result of the function
clara application, all one has to do in order to plot the object is:

plot(clarax)

The second way of viewing the result of a CLARA application is to simply print the components of the object of
class clara. For example, given the same object clarax of the previous example, one could print its components
using:

print(clarax)

Example

Suppose we have 500 objects and each object have two attributes (or features). Our goal is to group these objects
into K=2 groups based on their two features. The function CLARA can be used to define the groups as follow:

## generate 500 objects, divided into 2 clusters.

x <- rbind(cbind(rnorm(200,0,8), rnorm(200,0,8)), cbind(rnorm(300,50,8), rnorm(300,50,8)))

## run clara

clarax <- clara(x, 2)

clarax

clarax$clusinfo

## print components of clarax

print(clarax)

## plot clusters

plot(x, col = clarax$cluster)

## plot centers

points(clarax$centers, col = 1:2, pch = 8)

Result of printing components of clarax:

Call:    clara(x = x, k = 2) 

Medoids:

          [,1]       [,2]

[1,]  1.091033 -0.5367556

[2,] 51.044099 51.0638017

Objective function:      9.946085

Clustering vector:       int [1:500] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

Cluster sizes:           200 300 
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Best sample:

 [1]   6  45  51  56  67  75  85  90  94  97 110 111 160 170 176 181 201 219 249

[20] 260 264 275 296 304 317 319 337 340 361 362 369 370 374 379 397 398 411 420

[39] 422 424 436 448 465 489

Available components:

 [1] "sample"     "medoids"    "i.med"      "clustering" "objective" 

 [6] "clusinfo"   "diss"       "call"       "silinfo"    "data" 

Result of plotting "clarax"
Figure 2: Result of plotting clarax

Case study
In this section, we illustrate a case study using CLARA.

Scenario
This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each of the 50 US
states in 1973. Also given is the percent of the population living in urban areas.

Input Data
A data frame with 50 observations on 4 variables.

[,1] Murder numeric Murder arrests (per 100,000)
[,2] Assault numeric Assault arrests (per 100,000)
[,3] UrbanPop numeric Percent urban population
[,4] Rape numeric Rape arrests (per 100,000)

State Murder Assault UrbanPop Rape

Alabama 13.2 236 58 21.2

Alaska 10.0 263 48 44.5

Arizona 8.1 294 80 31.0

Arkansas 8.8 190 50 19.5

California 9.0 276 91 40.6

Colorado 7.9 204 78 38.7

Connecticut 3.3 110 77 11.1

Delaware 5.9 238 72 15.8

Florida 15.4 335 80 31.9

Georgia 17.4 211 60 25.8

Hawaii 5.3 46 83 20.2

Idaho 2.6 120 54 14.2

Illinois 10.4 249 83 24.0

Indiana 7.2 113 65 21.0

Iowa 2.2 56 57 11.3

Kansas 6.0 115 66 18.0
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Kentucky 9.7 109 52 16.3

Louisiana 15.4 249 66 22.2

Maine 2.1 83 51 7.8

Maryland 11.3 300 67 27.8

Massachusetts 4.4 149 85 16.3

Michigan 12.1 255 74 35.1

Minnesota 2.7 72 66 14.9

Mississippi 16.1 259 44 17.1

Missouri 9.0 178 70 28.2

Montana 6.0 109 53 16.4

Nebraska 4.3 102 62 16.5

Nevada 12.2 252 81 46.0

New Hampshire 2.1 57 56 9.5

New Jersey 7.4 159 89 18.8

New Mexico 11.4 285 70 32.1

New York 11.1 254 86 26.1

North Carolina 13.0 337 45 16.1

North Dakota 0.8 45 44 7.3

Ohio 7.3 120 75 21.4

Oklahoma 6.6 151 68 20.0

Oregon 4.9 159 67 29.3

Pennsylvania 6.3 106 72 14.9

Rhode Island 3.4 174 87 8.3

South Carolina 14.4 279 48 22.5

South Dakota 3.8 86 45 12.8

Tennessee 13.2 188 59 26.9

Texas 12.7 201 80 25.5

Utah 3.2 120 80 22.9

Vermont 2.2 48 32 11.2

Virginia 8.5 156 63 20.7

Washington 4.0 145 73 26.2

West Virginia 5.7 81 39 9.3

Wisconsin 2.6 53 66 10.8

Wyoming 6.8 161 60 15.6

Table 2: USArrests Database



CLARA 191

Execution
The function "clara" was used as follows:

## import data

x <- USArrests

## run CLARA

clarax <- clara(x[1:4], 3)

## print components of clarax

print(clarax)

## plot clusters

plot(x, col = clarax$cluster)

## plot centers

points(clarax$centers, col = 1:2, pch = 8)

1.1. plot(Assualt, Murder)
(USArrests) points(254,11.1, pch=16) text(254,11.11, labels ='New York') lines(Assault, (.63168 + (.04191 *
Assault)))

Output
The result of printing the components of the class returned by the function application is shown below:

Call:    clara(x = x[1:4], k = 3) 

Medoids:

         Murder Assault UrbanPop Rape

Michigan   12.1     255       74 35.1

Missouri    9.0     178       70 28.2

Nebraska    4.3     102       62 16.5

Objective function:      29.31019

Clustering vector:       Named int [1:50] 1 1 1 2 1 2 3 1 1 2 3 3 1 3 3 3 3 1 ...

 - attr(*, "names")= chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" "California" "Colorado" "Connecticut" ...

Cluster sizes:           16 14 20 

Best sample:

 [1] Alabama        Alaska         Arizona        Arkansas       California    

 [6] Colorado       Delaware       Florida        Georgia        Idaho         

[11] Illinois       Indiana        Iowa           Kansas         Kentucky      

[16] Louisiana      Maine          Maryland       Massachusetts  Michigan      

[21] Minnesota      Mississippi    Missouri       Montana        Nebraska      

[26] Nevada         New Hampshire  New York       North Carolina North Dakota  

[31] Ohio           Oklahoma       Oregon         Pennsylvania   Rhode Island  

[36] South Carolina South Dakota   Tennessee      Texas          Utah          

[41] Vermont        Virginia       Washington     West Virginia  Wisconsin     

[46] Wyoming       

Available components:

 [1] "sample"     "medoids"    "i.med"      "clustering" "objective" 
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 [6] "clusinfo"   "diss"       "call"       "silinfo"    "data"  

The result of plotting the class returned by the function application it is shown below:
Figure 3: Results of the example

Analysis
The implementation of CLARA generated three clusters, relatively homogeneous, consisting of 16, 14 and 20
countries. Analyzing the cluster means, we can relate each group with each of the three classes of states:
•• The cluster formed by Alabama, Alaska, Arizona, California, Delaware, Florida, Illinois, Louisiana, Maryland,

Michigan, Mississippi, Nevada, New Mexico, New York, North Carolina, South Carolina has the highest Murder,
Assault and Rape arests (per 100,00) and, not least, the largest population.

•• The cluster formed by Arkansas, Colorado, Georgia, Massachusetts, Missouri, New Jersey, Oklahoma, Oregon,
Rhode Island, Tennessee, Texas, Virginia, Washington, Wyoming has the intermediate Murder, Assault and Rape
arests (per 100,00) and, not least, the largest population.

•• The cluster formed by Connecticut, Hawaii, Idaho, Indiana, Iowa, Kansas, Kentucky, Maine, Minnesota,
Montana, Nebraska, New Hampshire, North Dakota, Ohio, Pennsylvania, South Dakota, Utah, Vermont, West
Virginia, Wisconsin has the lowest Murder, Assault and Rape arests (per 100,00) and, not least, the largest
population.

Analyzing, based on [3], the states of the two extreme clusters (1,3) it was possible to verify that there is a reason for
each country to be in these groups. California, although has a good Human Development Index and Median Personal
Earnings rate, has the 3rd biggest Unemployment Rate in the USA, the 2nd is Michigan and the 1st is Nevada, two
other states that are also in the cluster one. Connecticut has the highest Human Development Index and is on the
cluster three. Wyoming has the best percentage of people with High School Diploma, and is on the cluster two.
Others reasons can be verified checking this work together with [3].
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SVM

Introduction
Support Vector Machines (SVMs) are supervised learning methods used for classification and regression tasks that
originated from statistical learning theory [1]. As a classification method, SVM is a global classification model that
generates non-overlapping partitions and usually employs all attributes. The entity space is partitioned in a single
pass, so that flat and linear partitions are generated. SVMs are based on maximum margin linear discriminants, and
are similar to probabilistic approaches, but do not consider the dependencies among attributes [2].
Traditional Neural Network approaches have suffered difficulties with generalization, producing models which
overfit the data as a consequence of the optimization algorithms used for parameter selection and the statistical
measures used to select the best model. SVMs have been gaining popularity due to many attractive features and
promising empirical performance. They are based on the Structural Risk Minimization (SRM) principle [3] have
shown to be superior to the traditional principle of Empirical Risk Minimization (ERM) employed by conventional
Neural Networks. ERM minimizes the error on the training data, while SRM minimizes an upper bound on the
expected risk. This gives SRM greater generalization ability, which is the goal in statistical learning [4]. According to
[5], SVMs rely on preprocessing the data to represent patterns in a high dimension, typically much higher than the
original feature space. Data from two categories can always be separated by a hyperplane when an appropriate
nonlinear mapping to a sufficiently high dimension is used.
A classification task usually involves training and test sets which consist of data instances. Each instance in the
training set contains one target value (class label) and several attributes (features). The goal of a classifier is to
produce a model able to predict target values of data instances in the testing set, for which only the attributes are
known. Without loss of generality, the classification problem can be viewed as a two-class problem in which one's
objective is to separate the two classes by a function induced from available examples. The goal is to produce a
classifier that generalizes well, i.e. that works well on unseen examples. The below picture is an example of a
situation in which various linear classifiers can separate the data. However, only one maximizes the distance
between itself and the nearest example of each class (i.e. the margin) and for that is called the optimal separating
hyperplane. It is intuitively expected that this classifier generalizes better than the other options . The basic idea of
SVM classifier uses this approach, i.e. to choose the hyperplane that has the maximum margin.

Figure 1: Example of separating hyperplanes

http://en.wikibooks.org/w/index.php?title=File:SVM_Example_of_Hyperplanes.png
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Algorithm
Let D be a classification dataset with n points in a d-dimensional space D = {(xi, yi)}, with i = 1, 2, ..., n and let there
be only two class labels such that yi is either +1 or -1. A hyperplane h(x) gives a linear discriminant function in d
dimensions and splits the original space into two half-spaces:

,
where w is a d-dimensional weight vector and b is a scalar bias. Points on the hyperplane have h(x) = 0, i.e. the
hyperplane is defined by all points for which wTx = -b.

According to , if the dataset is linearly separable, a separating hyperplane can be found such that for all points with
label -1, h(x) < 0 and for all points labeled +1, h(x) > 0. In this case, h(x) serves as a linear classifier or linear
discriminant that predicts the class for any point. Moreover, the weight vector w is orthogonal to the hyperplane,
therefore giving the direction that is normal to it, whereas the bias b fixes the offset of the hyperplane in the
d-dimensional space.
Given a separating hyperplane h(x) = 0, it is possible to calculate the distance between each point xi and the
hyperplane by:

The margin of the linear classifier is defined as the minimum distance of all n points to the separating hyperplane.

All points (vectors x*
i) that achieve this minimum distance are called the support vectors for the linear classifier. In

other words, a support vector is a point that lies precisely on the margin of the classifying hyperplane.
In a canonical representation of the hyperplane, for each support vector x*

i with label y*
i we have that

. Similarly, for any point that is not a support vector, we have that , since, by
definition, it must be farther from the hyperplane than a support vector. Therefore we have that

.
The fundamental idea behind SVMs is to choose the hyperplane with the maximum margin, i.e. the optimal
canonical hyperplane. To do this, one needs to find the weight vector w and the bias b that yield the maximum
margin among all possible separating hyperplanes, that is, the hyperplane that maximizes . The problem then

becomes that of solving a convex minimization problem (notice that instead of maximizing the margin , one

can obtain an equivalent formulation of minimizing ) with linear constraints, as follows:
Objective Function

Linear Constraints

This minimization problem can be solved using the Lagrange multiplier method, which introduces a Lagrange
multiplier α for each constraint:

This method states that αi = 0 for all points that are at a distance larger than from the hyperplane, and only for

those points that are exactly at the margin, i.e. the support vectors, αi > 0. The weight vector of the classifier is
obtained as a linear combination of the support vectors, while the bias is the average of the biases obtained from each
support vector .
SVMs can handle linearly non-separable points, where the classes overlap to some extent so that a perfect separation 
is not possible, by introducing slack variables εi for each point xi in D. If 0 ≤ εi < 1, the point is still correctly 
classified. Otherwise, if εi > 1, the point is misclassified. So the goal of the classification becomes that of finding the
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hyperplane (w and b) with the maximum margin that also minimizes the sum of slack variables. A methodology
similar to that described above is necessary to find the weight vector w and the bias b.
SVMs can also solve problems with non-linear decision boundaries. The main idea is to map the original
d-dimensional space into a d’-dimensional space (d’ > d), where the points can possibly be linearly separated. Given
the original dataset D = {xi, yi} with i = 1,...,n and the transformation function Φ, a new dataset is obtained in the
transformation space DΦ = {Φ(xi), yi} with i = 1,...,n. After the linear decision surface is found in the d’-dimensional
space, it is mapped back to the non-linear surface in the original d-dimensional space . To obtain w and b, Φ(x)
needn't be computed in isolation. The only operation required in the transformed space is the inner product
Φ(xi)

TΦ(xj), which is defined with the kernel function (K) between xi and xj. Kernels commonly used with SVMs
include:

•• the polynomial kernel:

, where is the degree of the polynomial
•• the gaussian kernel:

, where is the spread or standard deviation.

•• the gaussian radial basis function (RBF):

•• the Laplace Radial Basis Function (RBF) kernel:

•• the hyperbolic tangent kernel:

•• the sigmoid kernel:

•• the Bessel function of the first kind kernel:

•• the ANOVA radial basis kernel:

•• the linear splines kernel in one dimension:

According to , the Gaussian and Laplace RBF and Bessel kernels are general-purpose kernels used when there is no
prior knowledge about the data. The linear kernel is useful when dealing with large sparse data vectors as is usually
the case in text categorization. The polynomial kernel is popular in image processing, and the sigmoid kernel is
mainly used as a proxy for neural networks. The splines and ANOVA RBF kernels typically perform well in
regression problems.
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Available Implementations in R
R [6] is a language and environment for statistical computing and graphics. There are five packages that implement
SVM in R []:
• e1071 [7]

• kernlab [8]

• klaR [9]

• svmpath [10]

• shogun [11]

This documentation will focus on the e1071 package because it is the most intuitive. For information on the others,
see the references cited above and the report of .

e1071 package
The e1071 package was the first implementation of SVM in R. The svm() function provides an interface to libsvm
[12], complemented by visualization and tuning functions. libsvm is a fast and easy-to-use implementation of the
most popular SVM formulation of classification (C and ), and includes the most common kernels (linear,
polynomial, RBF, and sigmoid). Multi-class classification is provided using the one-against-one voting scheme. It
also includes the computation of decision and probability values for predictions, shrinking heuristics during the
fitting process, class weighting in the classification mode, handling of sparse data, and cross-validation.
The R implementation is based on the S3 class mechanisms. It basically provides a training function with standard
and formula interfaces, and a predict() method. In addition, a plot() method for visualizing data, support vectors, and
decision boundaries is provided. Hyperparameter tuning is done using the tune() framework, which performs a grid
search over specified parameter ranges.

Installing and Starting the e1071 Package

To install e1071 package in R, type

    install.packages('e1071',dependencies=TRUE)

and to start to use the package, type

    library(e1071)

Main Functions in the e1071 Package for Training, Testing, and Visualizing

Some e1071 package functions are very important in any classification process using SVM in R, and thus will be
described here.
The first function is svm(), which is used to train a support vector machine. Some import parameters include:

• data: an optional data frame containing the variables in the model. If this option is used, the parameters x and
y described below, aren't necessary;

• x: a data matrix, a vector, or a sparse matrix that represents the instances of the dataset and their respective
properties. Rows represent the instances and columns represent the properties;

• y: a response vector with one label for each row (instance) of x;
• type: sets how svm() will work. The possible values for classification are: C, nu and one (for novelty

detection);
• kernel: defines the kernel used in training and prediction. The options are: linear, polynomial, radial basis and

sigmoid;
• degree: parameter needed if the kernel is polynomial (default: 3);
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• gamma: parameter needed for all types of kernels except linear (default: 1/(data dimension));
• coef0: parameter needed for polynomial and sigmoid kernels (default: 0);
• cost: cost of constraint violation (default: 1). This is the ‘C’-constant of the regularization term in the Lagrange

formulation;
• cross: specifies the cross-validation. A k > 0 is necessary. In this case, the training data is performed to assess

the quality of the model: the accuracy rate for classification;
• probability: logical indicating whether the model should allow for probability predictions.

An example of svm() usage is given below:

    library(MASS)

    data(cats)

    model  <- svm(Sex~., data = cats)

The first two commands specify the usage of the cats dataset, which contains 144 instances, 2 numerical attributes
for each instance ("Bwt" and "Hwt"), and the class for each instance (attribute "Sex"). The instance class can be "F",
for female, or "M", for male. In the third command, the parameter "Sex~." indicates the attribute (column) of the
dataset to be used as instance classes.
For information on the parameters of the model and on the number of support vectors, type:

    print(model)

    summary(model)

The result of the summary command is shown below:

  Call:

  svm(formula = Sex ~ ., data = cats)

  Parameters:

     SVM-Type:  C-classification 

   SVM-Kernel:  radial 

         cost:  1 

        gamma:  0.5 

  Number of Support Vectors:  84

   ( 39 45 )

  Number of Classes:  2 

  Levels: 

   F M

To see the built model with a scatter plot of the input, the plot() function can be used. This function optionally draws
a filled contour plot of the class regions. The main parameters of this function are listed below:

• model: an object of class svm data, which results from the svm() function;
• data: the data to visualize. It should be the same data used for building the model in the svm() function;
• symbolPalette, svSymbol, dataSymbol, and colorPalette: these parameters control the colors and symbols

used to represent support vectors and the other data points.



SVM 198

The following command will produce the below graph, in which support vectors are shown as ‘X’, true classes are
highlighted through symbol color, and predicted class regions are visualized using colored background.

    plot(model,cats)

The predict() function predicts values based on a model trained by svm. For a classification problem, it returns a
vector of predicted labels. Detailed information about its usage can be obtained with the following command.

    help(predict.svm)

Let us first divide the cats dataset into a train and a test set:

    index <- 1:nrow(cats)

    testindex <- sample(index, trunc(length(index)/3))

    testset <- cats[testindex,]

    trainset <- cats[-testindex,]

Now we run the model again using the train set and predict classes using the test set in order to verify if the model
has good generalization.

    model <- svm(Sex~., data = trainset)

    prediction <- predict(model, testset[,-1])

The -1 is because the dependent variable, Sex, is in column number 1.
A cross-tabulation of the true versus the predicted values yields (the confusion matrix):

    tab <- table(pred = prediction, true = testset[,1])

If you type tab, you will see the confusion matrix like is shown below:

http://en.wikibooks.org/w/index.php?title=File:SvmPlot.jpg
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      true

  pred  F  M

     F 10  8

     M  6 24

With this information, it is possible to compute the sensitivity, the specificity and the precision of the model to the
test set.
Model accuracy rates can be computed using the classAgreement() function:

    classAgreement(tab)

The tune() function can be used to tune hyperparameters of statistical methods using a grid search over the supplied
parameter ranges.

    tuned <- tune.svm(Sex~., data = trainset, gamma = 10^(-6:-1), cost = 10^(1:2))

    summary(tuned)

These commands will list the best parameters, the best performance, and details of the tested parameter values, as
shown below.

  Parameter tuning of `svm':

  - sampling method: 10-fold cross validation 

  - best parameters:

   gamma cost

     0.1  100

  - best performance: 0.1566667 

  - Detailed performance results:

     gamma cost     error dispersion

  1  1e-06   10 0.2600000  0.1095195

  2  1e-05   10 0.2600000  0.1095195

  3  1e-04   10 0.2600000  0.1095195

  4  1e-03   10 0.2600000  0.1095195

  5  1e-02   10 0.2833333  0.1230890

  6  1e-01   10 0.1788889  0.1359264

  7  1e-06  100 0.2600000  0.1095195

  8  1e-05  100 0.2600000  0.1095195

  9  1e-04  100 0.2600000  0.1095195

  10 1e-03  100 0.2833333  0.1230890

  11 1e-02  100 0.1788889  0.1359264

  12 1e-01  100 0.1566667  0.1014909
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Case Study
In this section we use a dataset to breast cancer diagnostic and apply svm in it. The svm model will be able to
discriminate benign and malignant tumors.

The DataSet
The dataset can be downloaded at [13]. In this dataset there are 569 instances and 32 attributes for each instance. The
first attribute is the identification of instance, the second is the label for the instance class, which can be M
(malignant tumor) or B (benign tumor). The following 30 attributes are real-valued input features that are computed
from a digitized image of a fine needle aspirate (FNA) of a breast mass. Finally, there are 357 benign instances and
212 malignant instances in dataset.
In order to read the dataset, after downloading it and saving it, type in R:

dataset <- read.csv('/home/myprofile/wdbc.data',head=FALSE)

'/home/myprofile/' is the path where the dataset was saved.

Preparing the DataSet
Let us now divide at random the dataset in two subsets, one with about 70% of the instances to training, and another
with around the remaining 30% of instances to testing:

index <- 1:nrow(dataset)

testindex <- sample(index, trunc(length(index)*30/100))

testset <- dataset[testindex,]

trainset <- dataset[-testindex,]

Choosing Parameters
Now, we will use the tune() function to do a grid search over the supplied parameter ranges (C - cost, - gamma),
using the train set. The range to gamma parameter is between 0.000001 and 0.1. For cost parameter the range is from
0.1 until 10.
It's important to understanding the influence of this two parameters, because the accuracy of an SVM model is
largely dependent on the selection them. For example, if C is too large, we have a high penalty for nonseparable
points and we may store many support vectors and overfit. If it is too small, we may have underfitting [14].
Notice that there aren't names for the columns (attributes) in the database . Then, R considers default names for
them, as such V1, to the first column, V2 to the second and so on. It's possible to check this typing:

names(dataset)

Then, as the class label is the second column of the dataset, the first parameter to tune() function will be V2:

tuned <- tune.svm(V2~., data = trainset, gamma = 10^(-6:-1), cost = 10^(-1:1))

The results are showed with the following command:

summary(tuned)

Parameter tuning of `svm':

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
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- sampling method: 10-fold cross validation 

- best parameters:

 gamma cost

 0.001   10

- best performance: 0.02006410 

- Detailed performance results:

   gamma cost      error dispersion

1  1e-06  0.1 0.36333333 0.05749396

2  1e-05  0.1 0.36333333 0.05749396

3  1e-04  0.1 0.36333333 0.05749396

4  1e-03  0.1 0.30064103 0.06402773

5  1e-02  0.1 0.06256410 0.04283663

6  1e-01  0.1 0.08512821 0.05543939

7  1e-06  1.0 0.36333333 0.05749396

8  1e-05  1.0 0.36333333 0.05749396

9  1e-04  1.0 0.28314103 0.05862576

10 1e-03  1.0 0.05506410 0.04373139

11 1e-02  1.0 0.02756410 0.02188268

12 1e-01  1.0 0.03256410 0.02896982

13 1e-06 10.0 0.36333333 0.05749396

14 1e-05 10.0 0.28314103 0.05862576

15 1e-04 10.0 0.05500000 0.04684490

16 1e-03 10.0 0.02006410 0.01583519

17 1e-02 10.0 0.02256410 0.01845738

18 1e-01 10.0 0.05532051 0.04110686

Training The Model
In order to build a svm model to predict breast cancer using C=10 and gamma=0.001, which were the best values
according the tune() function run before, type:

model  <- svm(V2~., data = trainset, kernel="radial", gamma=0.001, cost=10) 

To see the results of the model, as the number of support vectors is necessary type:

summary(model)

The result follows:

Call:

svm(formula = V2 ~ ., data = trainset, kernel = "radial", gamma = 0.001, cost = 10)

Parameters:

   SVM-Type:  C-classification 

 SVM-Kernel:  radial 

       cost:  10 

      gamma:  0.001 
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Number of Support Vectors:  79

 ( 39 40 )

Number of Classes:  2 

Levels: 

 B M

Testing the Model
Now we run the model again the test set to predict classes.

prediction <- predict(model, testset[,-2])

The -2 is because the label column to intance classes, V2, is in the second column.
To produce the confusion matrix type:

tab <- table(pred = prediction, true = testset[,2])

The confusion matrix is:

    true

pred   B   M

   B 103   6

   M   0  61

This means that there are 103 benign instances in test set and all of them were predicted as benign instances. On the
other hand, there are 67 malign instances in test set, 61 were predicted rightly and 6 as benign instances.
Let:
•• TP: true positive, i.e. malign instances predicted rightly
•• FP: false positive, i.e. benign instances predicted as malign
•• TN: true negative, i.e. benign instances predicted rightly
•• |N|: total of benign instances
•• |P|: total of malign instances

For this problem we have:
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The classification results are suitable.

References
[1][1] V. Vapnik, Statistical learning theory. Wiley, New Tork (1998).
[2][2] M. J. Zaki and W. Meira Jr. Fundamentals of Data Mining Algorithms. Cambridge University Press, 2010.
[3][3] S. R. Gunn, M. Brown and K. M. Bossley, Network performance assessment for neurofuzzy data modeling. Intelligent Data Analysis, volume

1208 of Lecture Notes in Computer Science (1997), 313.
[4][4] S. R. Gunn. Support vector machines for classification and regression.Tech. rep., University of Sothampton, UK, 1998.
[5][5] R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification. Ed.Wiley-Interscience, 2000.
[6] R Development Core Team (2005). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,

Vienna, Austria. ISBN 3-900051-07-0, URL http:/ / www. R-project. org/ .
[7] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, A. Weingessel. e1071: Misc Functions of the Department of Statistics (e1071). TU Wien,

Version 1.5-11, 2005. URL http:/ / CRAN. R-project. org/
[8] A. Karatzoglou, A. Smola, K. Hornik (2009)."kernlab An S4 Package for Kernel Methods in R". URL http:/ / www. jstatsoft. org/ v11/ i09/ .
[9] C. Roever, N. Raabe, K. Luebke, U. Ligges (2005). "klaR – Classification and Visualization." R package, Version 0.4-1. URL http:/ / CRAN.

R-project. org/ .
[10] T. Hastie. svmpath: The SVM Path algorithm. R package, Version 0.9, 2004. URL http:/ / CRAN. R-project. org/ .
[11] S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder, C. Gehl, and V. Franc. The SHOGUN Machine

Learning Toolbox. Journal of Machine Learning Research, 11:1799-1802, June 2010. URL http:/ / www. shogun-toolbox. org/ .
[12] C. Chang and C. Lin (2001). "libsvm: A Library for Support Vector Machines." URL http:/ / www. csie. ntu. edu. tw/ ~cjlin/ libsvm.
[13] http:/ / archive. ics. uci. edu/ ml/ datasets/ Breast+ Cancer+ Wisconsin+ %28Diagnostic%29
[14][14] E. Alpaydin. Introduction to machine learning. MIT Press, 2004.

penalizedSVM

Introduction
Classifiers are some of the most common data analysis tools. There are a lot of implemented techniques, but we may
point SVM (Support Vector Machine) as one of the most powerful, especially in high-dimension data. The most well
known SVM algorithm was created by Vladimir Vapnik. [1]

The standard SVM implementation SVM takes a input dataset and, for each given input, predicts which of two
possible classes the input set belongs to. That's most common use the algorithm to predict if the input belongs to
certain dichotomy, or not. Because of this characteristic, SVM is a called a non-probabilistic binary linear classifier.
On Machine Learning-based algorithms such as SVM, the input data has to be separated on two sets: a training set
and a test set. The difference between the training and the test set is that, on the training the examples' classes are
known beforehand. The test set contains the examples that should have their classes predicted. Given a set of training
examples, an SVM algorithm builds a model that predicts what are the categories of the test set's examples.
Representing the examples in a d-dimension space, the model built by the algorithm is a hyper-plan that separates the
examples belonging to the dichotomy from the ones that aren't. New examples are then mapped into that space so we
can predict the categories they belong, based on the side of the gap it falls on.
The technique described here is a variation of the standard SVM using penalty functions. The technique is
implemented on the R-package called penalized SVM, that has smoothly clipped absolute deviation (SCAD),
'L1-norm', 'Elastic Net' ('L1-norm' and'L2-norm') and 'Elastic SCAD' (SCAD and 'L2-norm') as available penalties.

http://www.R-project.org/.
http://CRAN.R-project.org/
http://www.jstatsoft.org/v11/i09/.
http://CRAN.R-project.org/.
http://CRAN.R-project.org/.
http://CRAN.R-project.org/.
http://www.shogun-toolbox.org/.
http://www.csie.ntu.edu.tw/~cjlin/libsvm.
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
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Technique/Algorithm

Algorithm

Finding the best model to classify new examples is, as a matter of fact, similar to the problem of finding the optimal
hyperplane. The quality of a model built by the algorithm is measured by the margin of its hyperplane. The margin is
the distance between the hyperplanes wx+b = 1 and wx+b = -1,being so that the closest points to wx+b = 0, in each
side of that hyperplane are crossed by the other two hyperplanes. The best hyperplanes are those with the biggest
margins.
The problem of finding the optimal hyperplane with maximal margin is solved by convex optimization. Maximizing
the margin can be achieved by solving:

The term

for SVM implementation has the form of L2 norm ('ridge penalty'). This penalty causes the reduction of the
coefficients, but not always to values greater than zero.
The quality of a model can also be measured by the error computed for the predictions on the training set. A low
prediction is required, but reducing it to zero may cause a problem know as over fitting. This means that the model
built classifies very well the examples on training set, but is not appropriate to classify the ones on the test set. The
predictions made in this case, would usually be wrong for the new examples.
Not only the low prediction defines a model's quality. It is possible to improve it further by identifying covariates
that plays important roles on discrimination and assessing their contribution to the classifier. This can be achieved by
applying a feature selection method.
Feature selection methods are divided into two classes: filter and wrapper methods[2]. Filter methods drop irrelevant
features before the model is built by the algorithm. Wrapper methods increases the prediction power by providing
the selection within the optimization procedure.
The R package 'penalizedSVM' provides some feature selection methods. One of them is the wrapper feature
selection SCAD (Smoothly Clipped Absolute Deviation). SCAD is a non-convex penalty function first proposed by
Fan [3] and discussed in [4].On [5] SVM is combined with SCAD for feature selection. The penalization term for
SCAD SVM has the form:

where the SCAD penalty function for each coefficient wj is defined as:
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with tuning parameters a > 2 (in the package, a = 3.7) and λ > 0. pλ (w) corresponds to a quadratic spline function
with knots at λ and aλ.
For small coefficients, the SCAD has the same behavior as the L1. For large coefficients, however, the SCAD
applies a constant penalty, in contrast to the L1 penalty, which increases linearly as the coefficient increases. This
absolute maximum of the SCAD penalty, which is independent from the input data, decreases the possible bias for
estimating large coefficients.

Implementation
The package described in this section is penalizedSVM. This package provides feature selection SVM using penalty
functions. The smoothly clipped absolute deviation (SCAD), 'L1-norm', 'Elastic Net' ('L1-norm' and 'L2-norm') and
'Elastic SCAD'(SCAD and 'L2-norm') penalties are available. The tuning parameters can be found using either a
fixed grid or a interval search.
This package has several dependencies. The packages that need to be installed and theirs descriptions are listed
below:
• e1071 Functions for latent class analysis, short time Fourier transform, fuzzy clustering, support
vector machines, shortest path computation, bagged clustering, naive Bayes classifier, ...
• MASSFunctions and datasets to support Venables and Ripley, 'Modern Applied Statistics with S' (4th
edition).
• corpcorThis package implements a James-Stein-type shrinkage estimator for the covariance matrix, with
separate shrinkage for variances and correlations. The details of the method are explained in Sch\"afer and Strimmer
(2005) and Opgen-Rhein and Strimmer (2007).
• stadmod Various statistical modeling functions including growth curve comparisons, limiting dilution
analysis, mixed linear models, heteroscedastic regression, Tweedie family generalized linear models, the
inverse-Gaussian distribution and Gauss quadrature.
• tgp Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes
with jumps to the limiting linear model (LLM).
• mlepg Maximum likelihood Gaussian process modeling for univariate and multi-dimensional outputs with
diagnostic plots. Contact the maintainer for a package version that implements sensitivity analysis functionality.
• lhs This package provides a number of methods for creating and augmenting Latin Hypercube Samples
The major function on penalizedSVM is svm.fs. Its use can be described as follow:

## Default S3 method:

svm.fs(

x,

y,

fs.method = c("scad", "1norm", "scad+L2", "DrHSVM"),

### tuning parameter settings

# chose the search method for tuning lambda1,2: 'interval' or 'discrete'

grid.search=c("interval","discrete"),

#fixed grid for lambda1, lambda2

lambda1.set=NULL,
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lambda2.set=NULL,

# define range for lambda1,2 for interval search

bounds=NULL,

# parms.coding="none" or "log2"

parms.coding= c("log2","none"),

# internal parameter for DIRECT

maxevals=500,

### valuidation settings

# fot nested validation, 'cross.outer'-fold cv

#cross.outer= 0,

# method for the inner validation: cross validation, gacv

inner.val.method = c("cv", "gacv"),

# 'cross.inner'-fold cv

cross.inner= 5,

# show plots in Direct?

show= c("none", "final"),

### other settings

# internal parameter for svm

calc.class.weights=FALSE,

class.weights=NULL,

#seed

seed=123,

# max iterations for the feature selection svm method

maxIter=700,

# verbose? 

verbose=TRUE,

...)

where the arguments are:
• x: input matrix with genes in columns and samples in rows!
• y: numerical vector of class labels, -1 , 1
• fs.method: feature selection method. Availible ’scad’, ’1norm’ for 1-norm, "DrHSVM" for Elastic Net and

"scad+L2" for Elastic SCAD
• grid.search: chose the search method for tuning lambda1,2: ’interval’ or ’discrete’, default: ’interval’
• lambda1.set: for fixed grid search: fixed grid for lambda1, default: NULL
• lambda2.set: for fixed grid search: fixed grid for lambda2, default: NULL
• bounds: for interval grid search: fixed grid for lambda2, default: NULL
• parms.coding: for interval grid search: parms.coding: none or log2 , default: log2
• maxevals: the maximum number of DIRECT function evaluations, default: 500.
• cross.outer: fold of outer cross validation, default is 0, no cv.
• calc.class.weights: calculate class.weights for SVM, default: FALSE
• class.weights: a named vector of weights for the different classes, used for asymmetric class
sizes. Not all factor levels have to be supplied (default weight: 1). All components have to be named.
• inner.val.method: method for the inner validation: cross validation, gacv , default cv
• cross.inner: ’cross.inner’-fold cv, default: 5
• show: for interval search: show plots of DIRECT algorithm: none, final iteration, all iterations. Default: none
• seed: seed
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• maxIter: maximal iteration, default: 700
• verbose: verbose?, default: TRUE
• ... additional: argument(s)

View
To visualize the result of the algorithm, you can use the function show, as exampled above.

Case Study
In this section, we illustrate a case study with penalizedSVM:

Scenario
The objective is to tell if a picture belongs to the same category of another one selected previously. For that purpose,
we use the difference between the values of those characteristics. The attributes for the data used as input represents
the difference from the value of the characteristic in the picture selected and the ones we want to classify.

Dataset
The training set and the test set were generated using the commands shown below:

> train<-sim.data(n = 200, ng = 100, nsg = 10, corr=FALSE, seed=seed )

> print(str(train))

List of 3

 $ x   : num [1:100, 1:200] -0.5605 2.1988 -0.0736 1.074 0.3563 ...

  ..- attr(*, "dimnames")=List of 2

  .. ..$ : chr [1:100] "pos1" "pos2" "pos3" "pos4" ...

  .. ..$ : chr [1:200] "1" "2" "3" "4" ...

 $ y   : Named num [1:200] 1 -1 1 1 1 -1 -1 -1 1 -1 ...

  ..- attr(*, "names")= chr [1:200] "1" "2" "3" "4" ...

 $ seed: num 123

NULL

> test<-sim.data(n =20, ng = 100, nsg = 10, corr=FALSE, seed=seed+1 )

> print(str(test))

List of 3

 $ x   : num [1:100, 1:20] -1.3851 -1.1036 -0.2677 0.2836 -0.0951 ...

  ..- attr(*, "dimnames")=List of 2

  .. ..$ : chr [1:100] "pos1" "pos2" "pos3" "pos4" ...

  .. ..$ : chr [1:20] "1" "2" "3" "4" ...

 $ y   : Named num [1:20] -1 1 -1 1 1 1 1 1 1 -1 ...

  ..- attr(*, "names")= chr [1:20] "1" "2" "3" "4" ...

 $ seed: num 124

NULL
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Execution
To build the model, the following command were used:

> bounds=t(data.frame(log2lambda1=c(-10, 10)))

>colnames(bounds)<-c("lower", "upper")

# computation intensive; for demostration reasons only for the first 100 features

# and only for 10 Iterations maxIter=10, default maxIter=700

>system.time( scad<- svm.fs(t(train$x)[,1:100], y=train$y, fs.method="scad", bounds=bounds,

+ cross.outer= 0, grid.search = "interval", maxIter = 10,

+ inner.val.method = "cv", cross.inner= 5, maxevals=500,

+ seed=seed, parms.coding = "log2", show="none", verbose=FALSE ) )

Output
To see the model created:

> print(str(scad$model))

List of 11

 $ w       : Named num [1:23] 0.625 0.616 0.353 0.258 0.959 ...

  ..- attr(*, "names")= chr [1:23] "pos1" "pos2" "pos3" "pos4" ...

 $ b       : num -0.115

 $ xind    : int [1:23] 1 2 3 4 5 6 7 8 9 10 ...

 $ index   : int [1:83] 3 4 9 14 17 18 22 35 37 40 ...

 $ fitted  : num [1:200] 2.6 1.24 0.65 1 1.15 ...

 $ type    : num 0

 $ lambda1 : num 0.126

 $ lambda2 : NULL

 $ iter    : num 10

 $ q.val   : num 0.195

 $ fit.info:List of 13

  ..$ fmin       : num 0.195

  ..$ xmin       : Named num -2.99

  .. ..- attr(*, "names")= chr "log2lambda1"

  ..$ iter       : num 26

  ..$ neval      : num 46

  ..$ maxevals   : num 500

  ..$ seed       : num 123

  ..$ bounds     : num [1, 1:2] -10 10

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr "log2lambda1"

  .. .. ..$ : chr [1:2] "lower" "upper"

  ..$ Q.func     : chr ".calc.scad"

  ..$ points.fmin:'data.frame':      1 obs. of  2 variables:

  .. ..$ log2lambda1: num -2.99

  .. ..$ f          : num 0.195

  ..$ Xtrain     : num [1:46, 1] -7.52 -2.26 -1.34 9.99 9.03 ...

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : NULL

  .. .. ..$ : chr "log2lambda1"
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  ..$ Ytrain     : num [1:46] 3.65e-01 3.20e-01 4.60e-01 1.00e+16 1.00e+16 ...

  ..$ gp.seed    : num [1:25] 123 124 125 126 127 128 129 130 131 132 ...

  ..$ model.list :List of 1

  .. ..$ model:List of 10

  .. .. ..$ w               : Named num [1:23] 0.625 0.616 0.353 0.258 0.959 ...

  .. .. .. ..- attr(*, "names")= chr [1:23] "pos1" "pos2" "pos3" "pos4" ...

  .. .. ..$ b               : num -0.115

  .. .. ..$ xind            : int [1:23] 1 2 3 4 5 6 7 8 9 10 ...

  .. .. ..$ index           : int [1:83] 3 4 9 14 17 18 22 35 37 40 ...

  .. .. ..$ fitted          : num [1:200] 2.6 1.24 0.65 1 1.15 ...

  .. .. ..$ type            : num 0

  .. .. ..$ lambda1         : num 0.126

  .. .. ..$ iter            : num 10

  .. .. ..$ q.val           : num 0.195

  .. .. ..$ inner.val.method: chr "cv"

NULL

To predict a class for the examples on the test set:

>(scad.5cv.test<-predict.penSVM(scad, t(test$x)[,1:100], newdata.labels=test$y) )

$pred.class

 [1] -1 1  -1 -1 -1 1  1  1  1  -1 -1 -1 1  1  1  -1 1  1  -1 -1

Levels: -1 1

$fitted

         [,1]

1  -2.5344366

2   2.3440943

3  -1.3972349

4  -0.3613470

5  -2.1187284

6   1.1287477

7   2.5584662

8   1.9155333

9   1.5543941

10 -0.7128084

11 -1.6944994

12 -0.2943272

13  1.8497781

14  2.7800572

15  0.8927699

16 -0.1289518

17  2.4560094

18  0.8756835

19 -2.2114729

20 -1.7342811

$tab
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          newdata.labels

pred.class -1 1

        -1  6 4

        1   1 9

$error

[1] 0.25

$sensitivity

[1] 0.6923077

$specificity

[1] 0.8571429

> test<-sim.data(n = 20, ng = 100, nsg = 10, corr=FALSE, seed=seed+1 )

> print(str(test))

List of 3

 $ x   : num [1:100, 1:20] -1.3851 -1.1036 -0.2677 0.2836 -0.0951 ...

  ..- attr(*, "dimnames")=List of 2

  .. ..$ : chr [1:100] "pos1" "pos2" "pos3" "pos4" ...

  .. ..$ : chr [1:20] "1" "2" "3" "4" ...

 $ y   : Named num [1:20] -1 1 -1 1 1 1 1 1 1 -1 ...

  ..- attr(*, "names")= chr [1:20] "1" "2" "3" "4" ...

 $ seed: num 124

NULL

> (scad.5cv.test<-predict.penSVM(scad, t(test$x)[,1:100], newdata.labels=test$y))

$pred.class

 [1] -1 1  -1 -1 -1 1  1  1  1  -1 -1 -1 1  1  1  -1 1  1  -1 -1

Levels: -1 1

$fitted

         [,1]

1  -2.5344366

2   2.3440943

3  -1.3972349

4  -0.3613470

5  -2.1187284

6   1.1287477

7   2.5584662

8   1.9155333

9   1.5543941

10 -0.7128084

11 -1.6944994

12 -0.2943272

13  1.8497781

14  2.7800572

15  0.8927699
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16 -0.1289518

17  2.4560094

18  0.8756835

19 -2.2114729

20 -1.7342811

$tab

          newdata.labels

pred.class -1 1

        -1  6 4

        1   1 9

$error

[1] 0.25

$sensitivity

[1] 0.6923077

$specificity

[1] 0.8571429

Analysis
To analyse the results, the follow commands can be used:

> print(paste("minimal 5-fold cv error:", scad$model$fit.info$fmin,

+ "by log2(lambda1)=", scad$model$fit.info$xmin))

[1] "minimal 5-fold cv error: 0.195 by log2(lambda1)= -2.99093721912059"

> print(" all lambdas with the same minimum? ")

[1] " all lambdas with the same minimum? "

> print(scad$model$fit.info$ points.fmin)

log2lambda1     f

36   -2.990937 0.195

> print(paste(scad$model$fit.info$neval, "visited points"))

[1] "46 visited points"

#Plot the results

>.plot.EPSGO.parms (scad$model$fit.info$Xtrain, scad$model$fit.info$Ytrain,

+ bound=bounds, Ytrain.exclude=10^16, plot.name=NULL )
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kNN

Introduction
This chapter introduces the k-Nearest Neighbors (kNN) algorithm for classification. kNN, originally proposed by Fix
and Hodges [1] is a very simple 'instance-based' learning algorithm. Despite its simplicity, it can offer very good
performance on some problems. We present a high level overview of the algorithm, explaining the relevant
parameters and implementation choices, followed by a step by step case study.

k-Nearest Neighbors
The kNN algorithm, like other instance-based algorithms, is unusual from a classification perspective in its lack of
explicit model training. While a training dataset is required, it is used solely to populate a sample of the search space
with instances whose class is known. No actual model or learning is performed during this phase; for this reason,
these algorithms are also known as lazy learning algorithms. Different distance metrics can be used, depending on
the nature of the data. Euclidean distance is typical for continuous variables, but other metrics can be used for
categorical data. Specialized metrics are often useful for specific problems, such as text classification. When an
instance whose class is unknown is presented for evaluation, the algorithm computes its k closest neighbors, and the
class is assigned by voting among those neighbors. To prevent ties, one typically uses an odd choice of k for binary
classification. For multiple classes, one can use plurality voting or majority voting. The latter can sometimes result in
no class being assigned to an instance, while the former can result in classifications being made with very low
support from the neighborhood. One can also weight each neighbor by an inverse function of its distance to the
instance being classified. The main advantages of kNN for classification are:
•• Very simple implementation.
•• Robust with regard to the search space; for instance, classes don't have to be linearly separable.
•• Classifier can be updated online at very little cost as new instances with known classes are presented.
•• Few parameters to tune: distance metric and k.
The main disadvantages of the algorithm are:
•• Expensive testing of each instance, as we need to compute its distance to all known instances. Specialized

algorithms and heuristics exist for specific problems and distance functions, which can mitigate this issue. This is
problematic for datasets with a large number of attributes. When the number of instances is much larger than the
number of attributes, a R-tree or a kd-tree can be used to store instances, allowing for fast exact neighbor
identification.

•• Sensitiveness to noisy or irrelevant attributes, which can result in less meaningful distance numbers. Scaling
and/or feature selection are typically used in combination with kNN to mitigate this issue.

•• Sensitiveness to very unbalanced datasets, where most entities belong to one or a few classes, and infrequent
classes are therefore often dominated in most neighborhoods. This can be alleviated through balanced sampling of
the more popular classes in the training stage, possibly coupled with ensembles.

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/kNN#endnote_knn
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Algorithm Description
The training phase for kNN consists of simply storing all known instances and their class labels. A tabular
representation can be used, or a specialized structure such as a kd-tree. If we want to tune the value of 'k' and/or
perform feature selection, n-fold cross-validation can be used on the training dataset. The testing phase for a new
instance 't', given a known set 'I' is as follows:
1.1. Compute the distance between 't' and each instance in 'I'
2.2. Sort the distances in increasing numerical order and pick the first 'k' elements
3.3. Compute and return the most frequent class in the 'k' nearest neighbors, optionally weighting each instance's class

by the inverse of its distance to 't'

Available Implementations
There are at least three implementations of kNN classification for R, all available on CRAN [2]:
• knn [3]

• kknn [4]

• RWeka [5], which is a bridge to the popular WEKA [6] machine and datamining toolkit, and provides a kNN
implementation as well as dozens of algorithms for classification, clustering, regression, and data engineering.

We choose RWeka for this tutorial, as it provides a lot more than simply kNN classification, and the sample session
shown below can be used to generate other classifiers with little modification.

Installing and Running RWeka
RWeka is a CRAN package, so it can be installed from within R:

> install.packages("RWeka", dependencies = TRUE)

Most R graphical user interfaces also provide package management through their UIs. Once installed, RWeka can be
loaded in as a library:

> library(RWeka)

It comes with several well-known datasets, which can be loaded in as ARFF files (Weka's default file format). We
now load a sample dataset, the famous Iris dataset [7], and learn a kNN classifier for it, using default parameters:

> iris <- read.arff(system.file("arff", "iris.arff", package = "RWeka"))

> classifier <- IBk(class ~., data = iris)

> summary(classifier)

=== Summary ===

Correctly Classified Instances         150              100      %

Incorrectly Classified Instances         0                0      %

Kappa statistic                          1     

Mean absolute error                      0.0085

Root mean squared error                  0.0091

Relative absolute error                  1.9219 %

Root relative squared error              1.9335 %

Total Number of Instances              150     

=== Confusion Matrix ===

http://cran.r-project.org
http://stat.ethz.ch/R-manual/R-patched/library/class/html/knn.html
http://cran.r-project.org/web/packages/kknn/
http://cran.r-project.org/web/packages/RWeka/
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/kNN#endnote_Weka
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/kNN#endnote_Fisher
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  a  b  c   <-- classified as

 50  0  0 |  a = Iris-setosa

  0 50  0 |  b = Iris-versicolor

  0  0 50 |  c = Iris-virginica

While in the above session we have only used default parameters, RWeka allows us to customize the KNN classifier
in several ways, aside from setting the value of k:
•• We can weight neighbors by the inverse of their distance to the target instance, or by 1 - distance.
•• We can use leave-one-out cross-validation to choose the optimal value for k in the training data.
•• We can use a sliding window of training instances, so once the classifier knows about W instances, older

instances are dropped as new ones are added.
•• We can customize the way the algorithm stores the known instances, which allows us to use kd-trees and similar

data structures for faster neighbor search in large datasets.

Case Study
We will now perform a more detailed exploration of the Iris dataset, using cross-validation for real test statistics, and
also performing some parameter tuning.

Dataset
The Iris dataset contains 150 instances, corresponding to three equally-frequent species of iris plant (Iris setosa, Iris
versicolour, and Iris virginica). An Iris versicolor is shown below, courtesy of Wikimedia Commons.

Iris versicolor

Each instance contains four attributes:sepal length in cm, sepal width in cm, petal length in cm, and petal width in
cm. The next picture shows each attribute plotted against the others, with the different classes in color.

Execution and Results
We will generate a kNN classifier, but we'll let RWeka automatically find the best value for k, between 1 and 20.
We'll also use 10-fold cross validation to evaluate our classifier:

> classifier <- IBk(class ~ ., data = iris, 

                    control = Weka_control(K = 20, X = TRUE))

> evaluate_Weka_classifier(classifier, numFolds = 10)

=== 10 Fold Cross Validation ===

=== Summary ===

http://en.wikibooks.org/w/index.php?title=File%3AIris_versicolor_3.jpg
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Correctly Classified Instances         142               94.6667 %

Incorrectly Classified Instances         8                5.3333 %

Kappa statistic                          0.92  

Mean absolute error                      0.041 

Root mean squared error                  0.1414

Relative absolute error                  9.2339 %

Root relative squared error             29.9987 %

Total Number of Instances              150     

=== Confusion Matrix ===

  a  b  c   <-- classified as

 50  0  0 |  a = Iris-setosa

  0 46  4 |  b = Iris-versicolor

  0  4 46 |  c = Iris-virginica

> classifier

IB1 instance-based classifier

using 6 nearest neighbour(s) for classification

As cross-validation generates random partitions of the dataset, your results may vary. Typically, however, the model
will make fewer than 10 mistakes.

Analysis
This simple case study shows that a kNN classifier makes few mistakes in a dataset that, although simple, is not
linearly separable, as shown in the scatterplots and by a look at the confusion matrix, where all misclassifications are
between Iris Versicolor and Iris Virginica instances. The case study also shows how RWeka makes it trivially easy to
learn classifiers (and predictors, and clustering models as well), and to experiment with their parameters. In this
classic dataset, a kNN classifier makes very few mistakes.
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Outliers

Introduction
Outlier detection is one of the most important tasks in data analysis. In this approach, an expert can explore a set of
associative rules in order to find how much the interestingness measure of these rules are away from their average
values in different subsets of the database. The threshold which divides abnormal and non-abnormal data
numerically is often the basis for important decisions. Most of the methods for univariate outlier detection are based
on (robust) estimation of location and scatter or on quantiles of the data. A major disadvantage is that these rules are
independent from the sample size. The dependence from the sample size is desirable to allow the threshold to be
fitted according to the sample size. Moreover, outliers are identified even for “clean” data, or at least no distinction is
made between outliers and extremes of a distribution.

Algorithm
Discovery methods for interesting exception rules can be divided into two approaches from the viewpoint of
background knowledge:
1.1. In a directed approach, a method is first provided with background knowledge typically in the form of rules, then

the method obtains exception rules each of which deviates from these rules;
2.2. In an undirected approach, on the other hand, no background knowledge is provided.
The problem can be summarized as finding a set of rule pairs each of which consists of an exception rule associated
with a strong rule. Suppose a strong rule is represented by if Y then x", where Y = y1 ^ y2 ^ ... ^ yn is a conjunction of
atoms and x is a single atom. Let Z = z1 ^ z2 ^ ... ^ zn be a conjunction of atoms and x' be a single atom which has the
same attribute but a value different to the atom x, then the exception rule is represented by if Y and Z then x". For
instance, consider the rule "using a seat belt is risky for a child", which represents exceptions to the well-known fact
"using a seat belt is safe".

Package Installation
•• Step1: If you already have the R package installed in your system jump to Step2. To install the R package you can

use your system apt-get capabilities, just typing the following command:

 $ sudo apt-get install r-base-core

If your system does not have apt-get capabilities, don't give up! You can download the package by visiting the
Outlier Package [1] website.
•• Step2: It is necessary to install the mvoutlier package. In order to install the mvoutlier package you first need to

run R. It can be done by the command:

 $ R

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/kNN#endnote_knn
http://cran.r-project.org
http://stat.ethz.ch/R-manual/R-patched/library/class/html/knn.html
http://cran.r-project.org/web/packages/kknn/
http://cran.r-project.org/web/packages/RWeka/
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/kNN#endnote_Weka
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/kNN#endnote_Fisher
http://cran.r-project.org/web/packages/mvoutlier/index.html
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Then type the following command in the R environment:

 > install.packages("mvoutlier")

The installation is done.
Now it is necessary to load the package:

 > library(mvoutlier)

Visualization
In order to show how we can visualize the results of the mvoutlier package, we will use a practical example. The
data set and its use in mvoutlier are described below.

Swiss Fertility and Socioeconomic Indicators (1888) Data
Swiss [2] is a database that contains standardized fertility measure and socio-economic indicators for each of 47
French-speaking provinces of Switzerland at about 1888.
Format

A data frame with 47 observations on 6 variables, each of which is in percent.

Fertility Ig, ‘common standardized fertility measure’

Agriculture % of males involved in agriculture as occupation

Examination % draftees receiving highest mark on army examination

Education % education beyond primary school for draftees.

Catholic % "catholic" (as opposed to "protestant").

Infant.Mortality live births who live less than 1 year.

All variables but "Fertility" give proportions of the population.
To find the outliers of this dataset just type these two commands below:

 > data(swiss)

 > uni.plot(swiss)

The above commands will generate the following figure:

http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/swiss.html
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The exceptions are found by analyzing the correlation among each feature represented by the columns. For example,
the red points next to the value 0 would not be outliers if they were analyzed separately, but as the correlation is
considered the points are outliers. Also it is important to point out that the outliers from a column are the same in the
others.
The y-axis represents the robust Mahalanobis distance based on the mcd estimator. The zero point indicates the
statistical average of the values.
A more detailed output can be reached with the following commands:

 > data(swiss)

 > uni.plot(swiss, symb=TRUE)

http://en.wikibooks.org/w/index.php?title=File:Exemplo1_1.jpg
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In the first picture there are only two colors and no special symbols are used. Outliers are marked red.
In the second picture we have set the argument symbol TRUE. In this case, different symbols (cross means big
value, circle means little value) according to the robust Mahalanobis [3] distance based on the mcd estimator and
different colors (red means big value, blue means little value) according to the euclidean distances of the
observations are used.
Besides highlight the outliers in the figure, a table is generated to identify which elements correspond to the outliers
highlighted. In this table, the elements marked as TRUE are the outliers. An example of this table is shown in the
Section #Case_Study .

Case Study

Scenario
Suppose you want to buy an antique car, because you're a famous collector. You have a list with many characteristics
of each car.
A car that stands out would be a good idea, but a car that "stands out" can be very good or very bad. So which car to
buy?

Input Data

Description

The dataset that we are going to use in this case study, called mtcars [4], was extracted from the 1974 Motor Trend
US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32
automobiles (1973–74 models).

http://en.wikibooks.org/w/index.php?title=File:Rguidolini_exemplo1_2_r_outliers.jpg
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/mtcars.html
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Format

A data frame with 32 observations on 11 variables.

mpg Miles/(US) gallon

cyl Number of cylinders

disp Displacement (cu.in.)

hp Gross horsepower

drat Rear axle ratio

wt Weight (lb/1000)

qsec 1/4 mile time

vs V/S

am Transmission (0 = automatic, 1 = manual)

gear Number of forward gears

carb Number of carburetors

As a collector, you are only interested in three characteristics: mpg, qseq and hp. So a filter need to be done in the
dataset. Moreover, you are only interested in the first 15 cars of the list, because you already have the others :)

Filtered Dataset

http://en.wikibooks.org/w/index.php?title=File:Outliers_car_data.jpg
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Execution
Loading the dataset:

 > data(mtcars)

Filtering the dataset:

 > cars = mtcars[1:15, c("mpg", "qsec", "hp")]

To see what we have filtered:

 > cars

Finding the stands out cars:

 > uni.plot(log(cars))

The "log" in the above command is used to put y-axis in logarithmic scale.

Results
mvoutlier Graphic:

mvoutlier Tables:

http://en.wikibooks.org/w/index.php?title=File:Cars.jpg
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Analysis
The first figure shows us that we have two outliers, i.e., two cars that stands out. In the figure, these cars are
represented by the red points. The outliers in a column are the same in the others.
It is worth noting that exceptions are found by analyzing the correlation among each feature of the car. For example,
the red dot next to the value 0 in column qsec would not be an outlier if it were analyzed separately, but as the
correlation is considered the point is an outlier.
To find out the cars that stands out we analyze the second figure. Clearly we can see the outliers marked as TRUE.
So the outliers are Merc 230 and Cadillac Fleetwood. Now the collector life is easier. It only remains to identify
what kind of "stand out" the collector is interested. Looking the #Filtered Dataset, we can note that the car Merc 230
is very economical, but slower and less powerful and we can see too that the Cadillac Fleetwood is very fast and
powerful, but consume too much fuel. As a good collector, he will likely choose the Cadillac Fleetwood, because it
was probably the most desired car.
Congratulations!!! You have just bought this amazing car!!!

http://en.wikibooks.org/w/index.php?title=File:Outliers_info.jpg
http://en.wikibooks.org/w/index.php?title=File:Cadillac_Fleetwood_2.jpg
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Decision Trees

Introduction
The philosophy of operation of any algorithm based on decision trees is quite simple. In fact, although sometimes
containing important differences in the way to do this or that step, any algorithm of this category is based on the
strategy of divide and conquer. In general, this philosophy is based on the successive division of the problem into
several subproblems with a smaller number of dimensions, until a solution for each of the simpler problems can be
found. Based on this principle, the classifiers based on decision trees try to find ways to divide the universe into
successively more subgroups (creating nodes containing the respective tests) until each addressing only one class or
until one of the classes shows a clear majority do not justifying further divisions, generating in this situation a leaf
containing the class majority. Obviously, the classification is only to follow the path dictated by the successive test
placed along the tree until it found a leaf containing the class to assign to the new example.
Although the basic philosophy of all the classifiers based on decision trees is identical, there are many possibilities
for its construction. Among all the key points in the selection of an algorithm to build decision trees some of them
should be highlighted for their importance:

•• Criteria for the choice of feature to be used in each node
•• How to calculate the partition of the set of examples
•• When you decide that a node is a leaf
•• What is the criterion to select the class to assign to each leaf

Some important advantages can be pointed to the decision trees, including:
•• Can be applied to any type of data
•• The final structure of the classifier is quite simple and can be stored and handled in a graceful manner
•• Handles very efficiently conditional information, subdividing the space into sub-spaces that are handled

individually
•• Reveal normally robust and insensitive to misclassification in the training set

http://cran.r-project.org/web/packages/mvoutlier/index.html
http://cran.r-project.org/web/packages/mvoutlier/mvoutlier.pdf
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•• The resulting trees are usually quite understandable and can be easily used to obtain a better understanding of
the phenomenon in question. This is perhaps the most important of all the advantages listed

Algorithm
The basic algorithm for decision tree is the greedy algorithm that constructs decision trees in a top-down recursive
divide-and-conquer manner. We usually employ greedy strategies because they are efficient and easy to implement,
but they usually lead to sub-optimal models. A bottom-up approach could also be used. The top-down decision tree
algorithm is given in Algorithm 1. It is a recursive divide-and-conquer algorithm. It takes a subset of data D as input
and evaluate all possible splits (Lines 4 to 11). The best split decision (Line 12), i.e. the split with the highest
information gain, is chosen to partition the data in two subsets (divide-and-conquer) and the method is called
recursively (Lines 14 and 15). The algorithm stops when the stop conditions are met (Line 1 to 3).

Stopping Criteria
A number of stopping conditions can be used to stop the recursive process. The algorithm stops when any one of the
conditions is true:

•• All the samples belong to the same class, i.e. have the same label since the sample is already "pure"
•• Stop if most of the points are already of the same class. This is a generalization of the first approach, with

some error threshold
•• There are no remaining attributes on which the samples may be further partitioned
•• There are no samples for the branch test attribute

Attribute Selection
We now need an objective criteria for judging how good a split is. The information gain measure is used to select the
test attribute at each node in the tree. The attribute with the highest information gain (or greatest entropy reduction)
is chosen as the test attribute for the current node. This attribute minimizes the information needed to classify the
samples in the resulting partitions.
Entropy, in general, measures the amount of disorder or uncertainty in a system. In the classification setting, higher
entropy (i.e., more disorder) corresponds to a sample that has a mixed collection of labels. Lower entropy
corresponds to a case where we have mostly pure partitions. In information theory, the entropy of a sample D is
defined as follows:

where is the probability of a data point in D being labeled with class , and k is the number of classes.
can be estimated directly from the data as follows:

We can also define the weighted entropy of a decision/split as follows:

where D has been partitioned into and due to some split decision. Finally, we can define the information
gain for a given split as:

In other words, Gain is the expected reduction in entropy caused by knowing the value of an attribute.
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Rpart
The rpart package found in the R tool can be used for classification by decision trees and can also be used to
generate regression trees. Recursive partitioning is a fundamental tool in data mining. It helps us explore the stucture
of a set of data, while developing easy to visualize decision rules for predicting a categorical (classification tree) or
continuous (regression tree) outcome. The rpart programs build classification or regression models of a very general
structure using a two stage procedure; the resulting models can be represented as binary trees. The tree is built by the
following process: first the single variable is found which best splits the data into two groups ('best' will be defined
later). The data is separated, and then this process is applied separately to each sub-group, and so on recursively until
the subgroups either reach a minimum size (5 for this data) or until no improvement can be made. The resultant
model is, with certainty, too complex, and the question arises as it does with all stepwise procedures of when to stop.
The second stage of the procedure consists of using cross-validation to trim back the full tree.

Grow the Tree
To grow a tree, use

    rpart (formula, data=, method=, control=)

where:

formula is in the format: outcome ~ predictor1+predictor2+predictor3+ect.

data= specifies the dataframe

method= "class" for a classification tree "anova" for a regression tree

control= optional parameters for controlling tree growth. For example, control=rpart.control(minsplit=30, cp=0.001) requires that the minimum
number of observations in a node be 30 before attempting a split and that a split must decrease the overall lack of fit by a factor of 0.001
(cost complexity factor) before being attempted.

Visualization and Examples

printcp
The command printcp displays the cp table for fitted rpart object. Prints a table of optimal prunings based on a
complexity parameter.
Usage

    printcp(object, digits=getOption("digits") - 2)

where object is an rpart object and digits is the number of digits of numbers to print.
Example:

    fit <- rpart(Price ~ HP, car.test.frame)

    printcp(fit)

Output

    Regression tree:

    rpart(formula = Price ~ HP, data = car.test.frame)

    Variables actually used in tree construction:

    [1] HP

    Root node error: 983551497/60 = 16392525

    n= 60



Decision Trees 227

    CP nsplit rel error xerror xstd

    1 0.41417 0 1.00000 1.03808 0.21528

    2 0.12304 1 0.58583 0.71817 0.15575

    3 0.01000 2 0.46279 0.62650 0.11675

plotcp
The command plotcp gives a visual representation of the cross-validation results in an rpart object. The set of
possible cost-complexity prunings of a tree from a nested set. For the geometric means of the intervals of values of
cp for which a pruning is optimal, a cross-validation has (usually) been done in the initial construction by rpart. The
cptable in the fit contains the mean and standard deviation of the errors in the cross-validated prediction against each
of the geometric means, and these are plotted by this function. A good choice of cp for pruning is often the leftmost
value for which the mean lies below the horizontal line.
Usage

    plotcp(object, minline = TRUE, lty = 3, col = 1, upper = c("size", "splits", "none"), args)

Where object is an rpart object, minline is whether a horizontal line is drawn 1SE above the minimum of the curve,
lty is the line type for this line, col is the colour for this line upper what is plotted on the top axis: the size of the tree
(the number of leaves), the number of splits or nothing and args are the arguments to be passed to or from other
methods.
Example:

    fit <- rpart(Kyphosis ~ Age + Number + Start, method="class", data=kyphosis)

    plotcp(fit)

rsq.rpart
Plot approximate r-squared versus the number of splits and relative error for different splits versus the number of
splits (two plots).
Usage

    rsq.rpart(object)

Where object is an rpart object.
Example:

    fit <- rpart(Mileage ~ Weight, car.test.frame)

    rsq.rpart(fit)

print
Prints an rpart object.
Usage

    print(object, minlength=0, spaces=2, cp, digits= getOption("digits"), args)

where object is an rpart object, minlength controls the abbreviation of labels, spaces is the number of spaces to
indent nodes of increasing depth, digits is the number of digits of numbers to print, cp prune all nodes with a
complexity less than cp from the printout and args are the arguments to be passed to or from other methods.
Example:
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    fit <- rpart(Kyphosis ~ Age + Number + Start, method="class", data=kyphosis)

    print(fit)

    n= 81

    node), split, n, loss, yval, (yprob)

    * denotes terminal node

    1) root 81 17 absent (0.7901235 0.2098765)

    2) Start>=8.5 62 6 absent (0.9032258 0.0967742)

    4) Start>=14.5 29 0 absent (1.0000000 0.0000000) *

    5) Start< 14.5 33 6 absent (0.8181818 0.1818182)

    10) Age< 55 12 0 absent (1.0000000 0.0000000) *

    11) Age>=55 21 6 absent (0.7142857 0.2857143)

    22) Age>=111 14 2 absent (0.8571429 0.1428571) *

    23) Age< 111 7 3 present (0.4285714 0.5714286) *

    3) Start< 8.5 19 8 present (0.4210526 0.5789474) *

summary
Returns a detailed listing of a fitted rpart object.
Usage

    summary(object, cp=0, digits=getOption("digits"), file, args)

Where object is an rpart object, digits is the number of significant digits to be used in the result, cp trim nodes with a
complexity of less than cp from the listing, file write the output to a given file name and args are the arguments to be
passed to or from other methods.
Example:

    fit <- rpart(Mileage ~ Weight, car.test.frame)

    summary(fit)

    Call:

    rpart(formula = Mileage ~ Weight, data = car.test.frame)

    n= 60

    CP nsplit rel error xerror xstd

    1 0.59534912 0 1.0000000 1.0294527 0.17907324

    2 0.13452819 1 0.4046509 0.6261647 0.10545991

    3 0.01282843 2 0.2701227 0.4746041 0.08567822

    4 0.01000000 3 0.2572943 0.4884699 0.08551818

    Node number 1: 60 observations, complexity param=0.5953491

    mean=24.58333, MSE=22.57639

    left son=2 (45 obs) right son=3 (15 obs)

    Primary splits:

    Weight < 2567.5 to the right, improve=0.5953491, (0 missing)

    Node number 2: 45 observations, complexity param=0.1345282

    mean=22.46667, MSE=8.026667

    left son=4 (22 obs) right son=5 (23 obs)

    Primary splits:

    Weight < 3087.5 to the right, improve=0.5045118, (0 missing)

    Node number 3: 15 observations
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    mean=30.93333, MSE=12.46222

    Node number 4: 22 observations

    mean=20.40909, MSE=2.78719

    Node number 5: 23 observations, complexity param=0.01282843

    mean=24.43478, MSE=5.115312

    left son=10 (15 obs) right son=11 (8 obs)

    Primary splits:

    Weight < 2747.5 to the right, improve=0.1476996, (0 missing)

    Node number 10: 15 observations

    mean=23.8, MSE=4.026667

    Node number 11: 8 observations

    mean=25.625, MSE=4.984375

plot (and text)
Plots an rpart object on the current graphics device as a decision tree. The function text label the decision tree plot.
Usage

    plot(object, uniform=FALSE, branch=1, compress=FALSE, nspace, margin=0, minbranch=.3, args)

Where object is an rpart object, uniform if TRUE uniform vertical spacing of the nodes is used, branch controls the
shape of the branches from parent to child node, compress if FALSE, the leaf nodes will be at the horizontal plot
coordinates of 1:nleaves, if TRUE, the routine attempts a more compact arrangement of the tree, nspace is the
amount of extra space between a node with children and a leaf, margin is an extra percentage of white space to leave
around the borders of the tree, minbranch set the minimum length for a branch to minbranch times the average
branch length and args are the arguments to be passed to or from other methods.
Example:

    fit <- rpart(Price ~ Mileage + Type + Country, cu.summary)

    plot(fit, compress=TRUE)

    text(fit, use.n=TRUE)

post
Create a PostScript presentation plot of an rpart object.
Usage

    plot(object, uniform=FALSE, branch=1, compress=FALSE, nspace, margin=0, minbranch=.3, args)

Object is an rpart object, uniform if TRUE uniform vertical spacing of the nodes is used, branch controls the shape
of the branches from parent to child node, compress if FALSE, the leaf nodes will be at the horizontal plot
coordinates of 1:nleaves, if TRUE, the routine attempts a more compact arrangement of the tree, nspace is the
amount of extra space between a node with children and a leaf, margin is an extra percentage of white space to leave
around the borders of the tree, minbranch set the minimum length for a branch to minbranch times the average
branch length and args are the arguments to be passed to or from other methods.
Example:

    fit <- rpart(Mileage ~ Weight, car.test.frame)

    post(fit, file = "", title="Classification Tree for Wikibook")

    post(fit, file = "c:/output.ps", title = " Classification Tree for Wikibook")
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Case Study

Scenario and Input data
Consider the relational database in the table below, whose schema is composed of attributes Play, Outlook,
Temperature, Humidity and Windy. A decision tree allows predicting the values of the attribute Play, given that we
know the values for attributes like Outlook, Humidity and Windy.

weather Temperature Humidity Wind Golf play

fine hot high none no

fine hot high few no cloud hot high none yes

rain warm high none yes

rain cold mediam none yes

rain cold mediam few no

cloud cold mediam few yes

fine warm heigh none no

fine cold mediam none yes

rain warm mediam none yes

fine warm mediam few yes

cloud warm high few yes

cloud hot mediam none yes

rain warm high few no

Importing data into R is simple. From a comma delimited text (CSV) file whose the first row contains variable
names we can use the command below:

    play_base <- read.table("path_to_the_file/play.csv", header=TRUE, sep=",")

We can use the command print(play_base) or just play_base to see the loaded table and the command
"summary(play_base)" to see a detailed listing of the rpart object:

    Play    Outlook      Temperature   Humidity   Windy

    no :3   overcast:2   cool:5        high :4    false:7

    yes:7   rainy :4     hot :2        normal:6   true :3

            sunny :4     mild:3

Execution and Output
After we have loaded the data we need to build the decision tree. The "Play" attribute is the outcome that will the
predicted. We can use the command below:

    fit <- rpart(Play ~ Outlook + Temperature + Humidity + Wind, method="class", data=play_base,

    control=rpart.control(minsplit=1))

We can use the command summary(fit) to see a detailed listing of the loaded decision tree and the command print(fit)
to see the decision tree:

    1) root 10 3 yes (0.3000000 0.7000000)

      2) Temperature= mild 3 1 no (0.6666667 0.3333333)

        4) Outlook= sunny 2 0 no (1.0000000 0.0000000) *
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        5) Outlook= overcast 1 0 yes (0.0000000 1.0000000) *

      3) Temperature= cool, hot 7 1 yes (0.1428571 0.8571429)

        6) Windy= true 1 0 no (1.0000000 0.0000000) *

        7) Windy= false 6 0 yes (0.0000000 1.0000000) *

The commands below plots an rpart object on the current graphics device as a decision tree:

    plot(fit, uniform=TRUE, main="Decision Tree - Play?")

    text(fit, use.n=TRUE, all=TRUE, cex=.8)

Analysis
The building of a decision tree starts with a description of a problem which should specify the variables, actions and
logical sequence for a decision-making. In a decision tree, a process leads to one or more conditions that can be
brought to an action or other conditions, until all conditions determine a particular action, once built you can have a
graphical view of decision-making.
The decision tree generated to solve the problem, the sequence of steps described determines and the weather
conditions, verify if it is a good choice to play or not to play. For instance, in the sequence of conditions
(temperature = mild) -> (Outlook = overcast) -> play = yes, whereas in the sequence (temperature = cold) ->
(Windy = true) -> play = no. This shows that a decision tree is a great tool for making decisions. Thus, this method
of classification may become an excellent tool for obtaining information, which often organizations do not know
they have, and which are extremely important to the tactical and management level.

References
Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2001.
Mohammed J. Zaki and Wagner Meira Jr.. Fundamentals of Data Mining Algorithms. Cambridge University Press,
2010.
Terry M. Therneau, Elizabeth J. Atkinson and Mayo Foundation. An Introduction to Recursive Partitioning Using
the RPART Routines, 1997.
R Language Definition - [1]
An Introduction to R - [2]
Quick-R - [3]
Terry M Therneau and Beth Atkinson. Package ‘rpart’, 2009.

References
[1] http:/ / cran. r-project. org/ doc/ manuals/ R-lang. html
[2] http:/ / cran. r-project. org/ doc/ manuals/ R-intro. html
[3] http:/ / www. statmethods. net/

http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-intro.html
http://www.statmethods.net/
http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-intro.html
http://www.statmethods.net/


Naïve Bayes 232

Naïve Bayes

Introduction
This chapter introduces the Naïve Bayes algorithm for classification. Naïve Bayes (NB) based on applying Bayes'
theorem (from Bayesian statistics) with strong (naive) independence assumptions. It is particularly suited when the
dimensionality of the inputs is high. Despite its simplicity, Naive Bayes can often outperform more sophisticated
classification methods.

Naïve Bayes
Naive Bayes classifiers can handle an arbitrary number of independent variables whether continuous or categorical.
Given a set of variables, = { }, we want to construct the posterior probability for the event

among a set of possible outcomes = { }. In a more familiar language, is the predictors
and is the set of categorical levels present in the dependent variable. Using Bayes' rule:

where is the posterior probability of class membership, i.e., the probability that belongs to
.

In practice we are only interested in the numerator of that fraction, since the denominator does not depend on and
the values of the features are given, so that the denominator is effectively constant. The numerator is equivalent
to the joint probability:

The "naive" conditional independence assumptions come into play: assume that each feature is conditionally
statistical independent of every other feature for . This means that

for , and so the joint model can be expressed as

This means that under the above independence assumptions, the conditional distribution over the class variable 
can be expressed like this:

where (the evidence) is a scaling factor dependent only on , i.e., a constant if the values of the
feature variables are known.

Finally, we can label a new case F with a class level that achieves the highest posterior probability:
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Available Implementations
There are at least two R implementations of Naïve Bayes classification available on CRAN [2]:
• e1071 [1]

• klaR [2]

Installing and Running the Naïve Bayes Classifier
E1071 is a CRAN package, so it can be installed from within R:

> install.packages('e1071', dependencies = TRUE)

Once installed, e1071 can be loaded in as a library:

> library(class) 

> library(e1071) 

It comes with several well-known datasets, which can be loaded in as ARFF files (Weka's default file format). We
now load a sample dataset, the famous Iris dataset [3] and learn a Naïve Bayes classifier for it, using default
parameters. First, let us take a look at the Iris dataset.

Dataset
The Iris dataset contains 150 instances, corresponding to three equally-frequent species of iris plant (Iris setosa, Iris
versicolour, and Iris virginica). An Iris versicolor is shown below, courtesy of Wikimedia Commons.

Iris versicolor

Each instance contains four attributes:sepal length in cm, sepal width in cm, petal length in cm, and petal width in
cm. The next picture shows each attribute plotted against the others, with the different classes in color.

> pairs(iris[1:4], main = "Iris Data (red=setosa,green=versicolor,blue=virginica)",

      pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

Execution and Results
First of all, we need to specify which base we are going to use:

> data(iris)

> summary(iris)

  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   

 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  

 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  

 Median :5.800   Median :3.000   Median :4.350   Median :1.300  

 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  

http://cran.r-project.org
http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/klaR/index.html
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/Na%C3%AFve_Bayes#endnote_Fisher
http://en.wikibooks.org/w/index.php?title=File%3AIris_versicolor_3.jpg
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 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  

 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  

       Species  

 setosa    :50  

 versicolor:50  

 virginica :50  

After that, we are ready to create a Naïve Bayes model to the dataset using the first 4 columns to predict the fifth.
(Factor the target column by so: dataset$col <- factor(dataset$col) )

> classifier<-naiveBayes(iris[,1:4], iris[,5]) 

> table(predict(classifier, iris[,-5]), iris[,5])

            

             setosa versicolor virginica

  setosa         50          0         0

  versicolor      0         47         3

  virginica       0          3        47

Analysis
This simple case study shows that a Naïve Bayes classifier makes few mistakes in a dataset that, although simple, is
not linearly separable, as shown in the scatterplots and by a look at the confusion matrix, where all misclassifications
are between Iris Versicolor and Iris Virginica instances.

References
1. ^ Fisher,R.A. (1936); The use of multiple measurements in taxonomic problems. Annual Eugenics, 7, Part II,

179-188.
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adaboost
Boosting is one of the most important developments in classification methodology. Boosting works by sequentially
applying a classification algorithm to reweighted versions of the training data and then taking a weighted majority
vote of the sequence of classifiers thus produced. For many classification algorithms, this simple strategy results in
dramatic improvements in performance. This seemingly mysterious phenomenon can be understood in terms of
well-known statistical principles, namely additive modeling and maximum likelihood. For the two-class problem,
boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli
likelihood as a criterion.

Technique/Algorithm

Algorithm
While boosting has evolved somewhat over the years, we describe the most commonly used version of the AdaBoost
procedure (Freund and Schapire - 1996) which we call Discrete AdaBoost. This is essentially the same as
AdaBoost.M1 for binary data in Freund and Schapire. Here is a concise description of AdaBoost in the two-class
classification setting.We have training data with a vector valued feature and 

or 1. We define where each is a classifier producing values plus or minus 1 and 

are constants; the corresponding prediction is sign . The AdaBoost trains the classifiers f_m(x) on weighted
versions of the training sample, giving higher weight to cases that are currently misclassified. This is done for a
sequence of weighted samples, and then the final classifier is defined to be a linear combination of the classifiers
from each stage.

Implementation
Adaboost is part of ada package. In this section you find more information about installing and using it on R
Environment.
Type the following commands in R console to install and load the ada package:

install.packages("ada")

library("rpart")

library("ada")

The function used to execute the algorithm adaboost is:

ada(x, y,test.x,test.y=NULL, loss=c("exponential","logistic"), 

type=c("discrete", "real", "gentle"), iter=50, nu=0.1, 

bag.frac=model.coef=TRUE, bag.shift=FALSE, max.iter=20, delta=10^(-10),

 verbose=...,na.action=na.rpart)

The arguments are:

x: matrix of descriptors.

Y: vector of responses. ‘y’ may have only two unique values.

test.x: testing matrix of discriptors (optional)
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test.y: vector of testing responses (optional)

loss: loss="exponential", "ada","e" or any variation corresponds to the default boosting

under exponential loss. loss="logistic","l2","l" provides boosting under logistic

loss.

type: type of boosting algorithm to perform. “discrete” performs discrete Boosting
(default). “real” performs Real Boost. “gentle” performs Gentle Boost.

Iter: number of boosting iterations to perform. Default = 50.

Nu: shrinkage parameter for boosting, default taken as 1.

bag.frac: sampling fraction for samples taken out-of-bag. This allows one to use random

permutation which improves performance.

model.coef: flag to use stageweights in boosting. If FALSE then the procedure corresponds

to epsilon-boosting.

bag.shift: flag to determine whether the stageweights should go to one as nu goes to zero.

This only makes since if bag.frac is small. The rationale behind this parameter

is discussed in (Culp et al., 2006).

max.iter: number of iterations to perform in the newton step to determine the coeficient.

delta: tolarence for convergence of the newton step to determine the coeficient.

Verbose: print the number of iterations necessary for convergence of a coeficient.

Formula: a symbolic description of the model to be fit.

data: an optional data frame containing the variables in the model.

Subset: an optional vector specifying a subset of observations to be used in the fitting

process.

na.action: a function that indicates how to process ‘NA’ values. Default=na.rpart.

...: arguments passed to rpart.control. For stumps, use rpart.control(maxdepth=1,cp=-

1,minsplit=0,xval=0). maxdepth controls the depth of trees, and cp

controls the complexity of trees. The priors should also be fixed through the

parms argument as discussed in the second reference.

Type the following command to show the result from this algorithm:

summary(AdaObject)

varplot(VariableImportanceObject)
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When using usage 'ada(x,y)': x data can take the form data.frame or as.matrix. y data can take form data.frame,
as.factor, as.matrix, as.array, or as.table. missing values must be removed from the data prior to execution.
When using usage 'ada(y~.)': data must be in a data frame. Response can have factor or numeric values. missing
values can be present in the descriptor data, whenever na.action is set to any option other than na.pass.
After the model is fit, 'ada' prints a summary of the function call, the method used for boosting, the number of
iterations, the final confusion matrix (observed classification vs predicted classification; labels for classes are same
as in response), the error for the training set, and testing, training , and kappa estimates of the appropriate number of
iterations.
A summary of this information can also be obtained with the command ‘print(x)’. Corresponding functions (Use help
with summary.ada, predict.ada, . . . varplot for additional information on these commands): summary : function to
print a summary of the original function call, method used for boosting, number of iterations, final confusion matrix,
accuracy, and kappa statistic (a measure of agreement between the observed classification and predicted
classification). ‘summary’ can be used for training, testing, or validation data.
predict : function to predict the response for any data set (train, test, or validation)
plot : function to plot performance of the algorithm across boosting iterations. Default plot is iteration number
(x-axis) versus prediction error (y-axis) for the data set used to build the model. Function can also simultaneously
produce an error plot for an external test set and a kappa plot for training and test sets.
pairs : function to produce pairwise plots of descriptors. Descriptors are arranged by decreasing frequency of
selection by boosting (upper left = most frequently chosen). The color of the marker in the plot represents class
membership; the Size of the marker represents predicted class probability. The larger the marker, the higher the
probability of classification.
varplot : plot of variables ordered by the variable importance measure (based on improvement).
addtest : add a testing data set to the ada object, therefore the testing errors only have to be computed once.
update : add more trees to the ada object.

Case Study

Scenario
A data set that contains information about compounds used in drug discovery. Specifically, this data set consists of
5631 compounds on which an in-house solubility screen (ability of a compound to dissolve in a water/solvent
mixture) was performed. Based on this screen, compounds were categorized as either insoluble (n=3493) or soluble
(n=2138). Then, for each compound, 72 continuous, noisy structural descriptors were computed. Of these
descriptors, one contained missing values for approximately 14% (n=787) of the observations. The objective of the
analysis is to model the relationship between the structural descriptors and the solubility class. The data will be
called soldat.

Data
Input format:

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

x4 a numeric vector

x5 a numeric vector

x6 a numeric vector
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x7 a numeric vector

x8 a numeric vector

x9 a numeric vector

x10 a numeric vector

x11 a numeric vector

x12 a numeric vector

x13 a numeric vector

x14 a numeric vector

x15 a numeric vector

x16 a numeric vector

x17 a numeric vector

x18 a numeric vector

x19 a numeric vector

x20 a numeric vector

.

.

.

x72 a numeric vector with missing data

y a numeric vector

Execution
data("soldat")

n <- nrow(soldat)

set.seed(100)

ind <- sample(1:n)

trainval <- ceiling(n * .5)

testval <- ceiling(n * .3)

train <- soldat[ind[1:trainval],]

test <- soldat[ind[(trainval + 1):(trainval + testval)],]

valid <- soldat[ind[(trainval + testval + 1):n],]

control <- rpart.control(cp = -1, maxdepth = 14,maxcompete = 1,xval = 0)

gen1 <- ada(y~., data = train, test.x = test[,-73], test.y = test[,73], type = "gentle", control = control, iter = 70)

gen1 <- addtest(gen1, valid[,-73], valid[,73])

summary(gen1)

varplot(gen1)

Output
Loss: exponential Method: gentle Iteration: 70

Training Results

Accuracy: 0.987 Kappa: 0.972

Testing Results

Accuracy: 0.765 Kappa: 0.487
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Analysis
Testing accuracy rates are printed in the order they are entered so the accuracy on the testing set is 0.765 and on the
validation set 0.781. For this type of early drug discovery data, the Gentle AdaBoost algorithm performs adequately
with test set accuracy of 76.5% (kappa is aproximately 0.5). In order to enhance our understanding regarding the
relationship between descriptors and the response, the varplot function was employed.

References
1. Meira Jr., W.; Zaki, M. Fundamentals of Data Mining Algorithms. [1]
2. CBA R package. [1]
3.3. ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF BOOSTING, by Jerome Friedman, Trevor

Hastie and Robert Tibshirani

References
[1] http:/ / cran. r-project. org/ web/ packages/ ada/ index. html

http://en.wikibooks.org/w/index.php?title=File:VariableImportancePlot.png
http://www.dcc.ufmg.br/miningalgorithms/DokuWiki/doku.php
http://cran.r-project.org/web/packages/ada/index.html
http://cran.r-project.org/web/packages/ada/index.html
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JRip

Synopsis
This class implements a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction
(RIPPER), which was proposed by William W. Cohen as an optimized version of IREP. It is based in association
rules with reduced error pruning (REP), a very common and effective technique found in decision tree algorithms. In
REP for rules algorithms, the training data is split into a growing set and a pruning set. First, an initial rule set is
formed that over ts the growing set, using some heuristic method. This overlarge rule set is then repeatedly
simplified by applying one of a set of pruning operators typical pruning operators would be to delete any single
condition or any single rule. At each stage of simplification, the pruning operator chosen is the one that yields the
greatest reduction of error on the pruning set. Simplification ends when applying any pruning operator would
increase error on the pruning set.
The algorithm is briefly described as follows: Initialize RS = {}, and for each class from the less prevalent one to the
more frequent one, DO:

1. Building stage:
Repeat 1.1 and 1.2 until the description length (DL) of the rule set and examples is 64 bits greater than the smallest
DL met so far, or there are no positive examples, or the error rate >= 50%.

1.1. Grow phase:

Grow one rule by greedily adding antecedents (or conditions) to the rule until the rule is perfect (i.e. 100% accurate).
The procedure tries every possible value of each attribute and selects the condition with highest information gain:
p(log(p/t)-log(P/T)).

1.2. Prune phase:

Incrementally prune each rule and allow the pruning of any final sequences of the antecedents;The pruning metric is
(p-n)/(p+n) – but it's actually 2p/(p+n) -1, so in this implementation we simply use p/(p+n) (actually (p+1)/(p+n+2),
thus if p+n is 0, it's 0.5).

2. Optimization stage:
after generating the initial rule set {Ri}, generate and prune two variants of each rule Ri from randomized data using
procedure 1.1 and 1.2. But one variant is generated from an empty rule while the other is generated by greedily
adding antecedents to the original rule. Moreover, the pruning metric used here is (TP+TN)/(P+N).Then the smallest
possible DL for each variant and the original rule is computed. The variant with the minimal DL is selected as the
final representative of Ri in the rule set. After all the rules in {Ri} have been examined and if there are still residual
positives, more rules are generated based on the residual positives using Building Stage again. 3. Delete the rules
from the rule set that would increase the DL of the whole rule set if it were in it. and add resultant rule set to RS.
ENDDO Note that there seem to be 2 bugs in the original ripper program that would affect the rule set size and
accuracy slightly. This implementation avoids these bugs and thus is a little bit different from Cohen's original
implementation. Even after fixing the bugs, since the order of classes with the same frequency is not defined in
ripper, there still seems to be some trivial difference between this implementation and the original ripper, especially
for audiology data in UCI repository, where there are lots of classes of few instances. Details please see:
1.1. William W. Cohen: Fast Effective Rule Induction. In: Twelfth International Conference on Machine Learning,

115-123, 1995.
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Installation
The caret package can be installed by using the following command on R's command-line:

install.packages("caret", dependencies = TRUE)

The above command shall recursivelly download and install all packages that caret depend to along with fpc itself.

Example
The example in this section will illustrate the carets's JRip usage on the IRIS database:

>library(caret)

>library(RWeka)

>data(iris)

>TrainData <- iris[,1:4]

>TrainClasses <- iris[,5]

>jripFit <- train(TrainData, TrainClasses,method = "JRip")

Study Case

Dataset
The Iris dataset contains 150 instances, corresponding to three equally-frequent species of iris plant (Iris setosa, Iris
versicolour, and Iris virginica). An Iris versicolor is shown below, courtesy of Wikimedia Commons.

Iris versicolor

Each instance contains four attributes:sepal length in cm, sepal width in cm, petal length in cm, and petal width in
cm. The next picture shows each attribute plotted against the others, with the different classes in color.

Execution and Results
First of all, we need to specify which base we are going to use:

> data(iris)

> summary(iris)

  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   

 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  

 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  

 Median :5.800   Median :3.000   Median :4.350   Median :1.300  

 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  

 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  

 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  

http://en.wikibooks.org/w/index.php?title=File%3AIris_versicolor_3.jpg
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       Species  

 setosa    :50  

 versicolor:50  

 virginica :50  

After that, we are ready to create a Naïve Bayes model to the dataset using the first 4 columns to predict the fifth.

>data(iris)

>varIndex <- 1:numSamples

>

>TrainData <- iris[,1:4]

>TrainClasses <- iris[,5]

>jripFit <- train(TrainData, TrainClasses,method = 

"JRip",preProcess = c("center", "scale"),tuneLength = 10,trControl = 

trainControl(method = "cv"))

Output
Loading required package: class

Attaching package: 'class'

The following object(s) are masked from 'package:reshape':

   condense

Fitting: NumOpt=1 

Fitting: NumOpt=2 

Fitting: NumOpt=3 

Fitting: NumOpt=4 

Fitting: NumOpt=5 

Fitting: NumOpt=6 

Fitting: NumOpt=7 

Fitting: NumOpt=8 

Fitting: NumOpt=9 

Fitting: NumOpt=10 

Aggregating results

Selecting tuning parameters

Fitting model on full training set

Result
> jripFit

Call:

train.default(x = TrainData, y = TrainClasses, method = "JRip", 

    preProcess = c("center", "scale"), trControl = trainControl(method = "cv"), 

    tuneLength = 10)

150 samples
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  4 predictors

Pre-processing: centered, scaled 

Resampling: Cross-Validation (10 fold) 

Summary of sample sizes: 135, 135, 135, 135, 135, 135, ... 

Resampling results across tuning parameters:

  NumOpt  Accuracy  Kappa  Accuracy SD  Kappa SD  Selected

  1       0.953     0.93   0.045        0.0675            

  2       0.953     0.93   0.045        0.0675    *       

  3       0.933     0.9    0.0444       0.0667            

  4       0.94      0.91   0.0584       0.0876            

  5       0.94      0.91   0.0584       0.0876            

  6       0.94      0.91   0.0584       0.0876            

  7       0.94      0.91   0.0584       0.0876            

  8       0.94      0.91   0.0584       0.0876            

  9       0.94      0.91   0.0584       0.0876            

  10      0.94      0.91   0.0584       0.0876            

Accuracy was used to select the optimal model using the largest value.

The final value used for the model was NumOpt = 2.

The caret package runned the training tunning the NumOpt JRip parameter from 1 to 10 and chouse the best
performance wich is NumOpt=2 with a 95.3% accuracy. If some other algorithm was chosen, other algorithm
parameter would be tunned.
If we plot the results we have a plot of the parameter choosing accuracy:

>plot(jripFit)

JRip accuracy vs. NumOpt parameter.

http://en.wikibooks.org/w/index.php?title=File%3AExample.jpg
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References
1.1. William W. Cohen: Fast Effective Rule Induction. In: Twelfth International Conference on Machine Learning,

115-123, 1995.

RWeka

Description
An R interface to Weka (Version 3.7.2). Weka is a collection of machine learning algorithms for data mining tasks
written in Java, containing tools for data pre-processing, classification, regression, clustering, association rules, and
visualization. Package RWeka contains the interface code, the Weka jar is in a separate package RWekajars.

Requirements
R (>= 2.6.0)
RWekajars (>= 3.7.2)
rJava (>= 0.6-3)
Java (>= 5.0)

General API
1.1. Evaluate Weka Classifier
2.2. Predict Weka Classifier
3.3. Predict Weka Clusterer
4.4. Weka associators
5.5. Weka classifiers
6.6. Weka classifiers functions
7.7. Weka classifier lazy
8.8. Weka classifier meta
9.9. Weka classifier rules
10.10. Weka classifier trees
11.11. Weka clusterers
12.12. Weka control
13.13. Weka converters
14.14. Weka filters
15.15. Weka interfaces
16.16. Weka stemmers
17.17. Weka tokenizers

http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Evaluate_Weka_Classifier
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Predict_Weka_Classifier
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Predict_Weka_Clusterer
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_associators
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_classifiers
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_classifiers_functions
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_classifier_lazy
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_classifier_meta
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_classifier_rules
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_classifier_trees
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_clusterers
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_control
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_converters
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_filters
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_interfaces
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_stemmers
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Weka_tokenizers
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IO API
1.1. Dot
2.2. Read.arff
3.3. Write.arff

Package API
1.1. WOW
2.2. WPM

gausspred

Description
This software is used to predict the discrete response based on selected high dimensional features, such as gene
expression data. The data are modeled with Bayesian Gaussian models. When a large number of features are
available, one may like to select only a subset of features to use, typically those features strongly correlated with the
response in training cases. Such a feature selection procedure is however invalid since the relationship between the
response and the features will appear stronger. This package provides a way to avoid this bias and yields
well-calibrated prediction for the test cases when one uses F-statistic to select features.

Requirements
R (>= 2.8.1)

General API
1.1. assess prediction
2.2. data gau
3.3. train pred gau

http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Dot
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Read.arff
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/Write.arff
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/WOW
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/RWeka/WPM
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/gausspred/assess_prediction
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/gausspred/data_gau
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/gausspred/train_pred_gau
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optimsimplex

Description
Provides a building block for optimization algorithms based on a simplex. The optimsimplex package may be used
in the following optimization methods: the simplex method of Spendley et al., the method of Nelder and Mead,
Box’s algorithm for constrained optimization, the multi-dimensional search by Torczon, etc...

Requirements
optimbase

General API
1.1. optimsimplex-package
2.2. Function evaluations
3.3. Get functions
4.4. optimsimplex.destroy
5.5. optimsimplex.log
6.6. optimsimplex.new
7.7. optimsimplex.print
8.8. optimsimplex.reflect
9.9. optimsimplex.shrink
10.10. optimsimplex.utils
11.11. Set functions
12.12. Simplex gradient

http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/optimsimplex-package
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/Function_evaluations
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/Get_functions
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/optimsimplex.destroy
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/optimsimplex.log
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/optimsimplex.new
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/optimsimplex.print
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/optimsimplex.reflect
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/optimsimplex.shrink
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/optimsimplex.utils
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/Set_functions
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/optimsimplex/Simplex_gradient
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CCMtools

Description
This package proposes a clustering method called “Correlation Clustering Model” (CCM) based on mixture of
canonical correlation analysis (CCA). It also provides some tools for cluster analysis.

General API
1.1. CCM
2.2. CWGLI
3.3. DI
4.4. Info.Criterion
5.5. learn.and.project.clusters
6.6. Percent.bad.and.false.classif.per.cluster
7.7. WGP

FactoMineR
FactoMineR is a R [2] package dedicated to multivariate data analysis. The main features of this package is the
possibility to take into account different types of variables (quantitative or categorical), different types of structure on
the data (a partition on the variables, a hierarchy on the variables, a partition on the individuals) and finally
supplementary information (supplementary individuals and variables). Moreover, the dimensions issued from the
different exploratory data analyses can be automatically described by quantitative and/or categorical variables.
Numerous graphics are also available with various options. Finally, a graphical user interface is implemented within
the Rcmdr environment in order to propose a user friendly package.

Methods
The methods implemented in this package are conceptually similar with respect to its main goal, for example, merge
and simplify the data by reducing the dimensionality of the data set. These methods are used depending on what data
are available and if the variables are quantitative (Numerous) or qualitative (categorical or nominal).
Several methods are implemented, the most classical (PCA, Correspondence Analysis, Multiple Correspondence
Analysis, Multiple Factor Analysis) as well as some advanced methods (Hierarchical Multiple Factor Analysis,
Mixed Data Analysis, Dual Multiple Factor Analysis).
For the classical ones we have the following situation-use solutions:
•• Principal component analysis (PCA) when individuals are described by quantitative variables;
•• � Correspondence analysis (CA) when individuals are described by two categorical variables that leads to a

contingency table;
•• � Multiple correspondence analysis (MCA) when individuals are described by categorical variables.
And for the advanced methods:
•• MFA (Multiple Factorial Analysis), for which the variables of a same group may be numerical or categorical.
•• HMFA (Hierarchical Multiple Factorial Analysis), an extension of MFA for which variables are structured

according to a hierarchy.
•• GPA (Generalized Procustean Analysis), for which variables must be continuous.

http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/CCMtools/CCM
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/CCMtools/CWGLI
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/CCMtools/DI
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/CCMtools/Info.Criterion
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/CCMtools/learn.and.project.clusters
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/CCMtools/Percent.bad.and.false.classif.per.cluster
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Packages/CCMtools/WGP
http://www.r-project.org/
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Let X be the data table of interest. In order to reduce the dimensionality, X is transformed to a new coordinate
system by an orthogonal linear transformation. Let Fs (resp. Gs ) denotes the vector of the coordinates of the rows
(resp. columns) on the axis of rank s. Those two vectors are related by the so called “transition formulae”. In the case
of PCA, they can be written:

where Fs (i) denotes the coordinate of the individual i on the axis s, Gs (k) the coordinate of the variable k on the axis
s, λs the eigenvalue associated with the axis s, mk the weight associated to the variable k, pi the weight associated to
the individual i, xik the general term of the data table (row i, column k).
The transition formulae lay the foundation of our point of view and consequently set the graphical outputs at the
roots of our practice. From these formulae it is crucial to analyze the scatter plots of the individuals and of the
variables conjointly: an individual is at the same side as the variables for which it takes high values, and at the
opposite side of the variables for which it takes low values.

Supplementary elements
Another important feature of the transition formulae is that they can be applied to supplementary individuals and/or
variables in order to add supplementary information on the scatter plots for a better understanding of the data. In the
PCA framework, let i' be a new individual, its coordinate on the axis of rank s can be easily obtained as followed:

In the same manner, it is also easy to calculate the coordinate of a supplementary variable when the former is
quantitative; in this case the supplementary variable lies in the scatter plot of the variables. When the variable is
categorical, its modalities are represented by the way of a “mean individual” per modality. For each modality, the
values associated with each “mean individual” are the means of each variable over the individuals endowed with this
modality; in this case the supplementary variable lies in the scatter plot of the individuals.

Implementation

Installation
Load FactoMineR in your R session by writing the following line code:

    library(FactoMineR)

to Download the graphical interface of FactoMineR in your R session write the following line code (you have to be
connected to internet):

    source("http:/ / factominer. free. fr/ install-facto. r")

http://factominer.free.fr/install-facto.r
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Loading and using
Load FactoMineR for each new R session by typing the following line code:

    library(FactoMineR)

Or load FactoMineR and its GUI for each new R session by typing the following line code:

    library(Rcmdr)

Functions Reference
A complete implementation reference of all fifty FactoMineR functions, with description, usage, arguments and
values, can be foud here [1]

Visualization
With the function plot, you can draw graphs and results. Usage:

    R> plot(<method>,<what variable to color individuals from>)

Decathlon data - available with the package documentation) :
supplementary variables are in blue

Individuals graph (Decathlon data - - available with the
package documentation): individuals are colored from the

athletics meeting

With the graphical interface of FactoMineR, you can perform easily and intuitive tasks. As an example, we have the
interface for the PCA function: The main window allows to choose the active variables (by default all the variables
are active and the PCA can be performed). Several buttons allow to choose the supplementary quantitative or
categorical variables, the supplementary individuals, the outputs to be displayed or the graphs to be plotted.

http://cran.r-project.org/web/packages/FactoMineR/FactoMineR.pdf
http://en.wikibooks.org/w/index.php?title=File%3APrincipal-correspondence-analysis-ind-small.png
http://en.wikibooks.org/w/index.php?title=File%3ACoord-ellipses.PNG
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Individuals graph (Decathlon data - - available with the package documentation):
individuals are colored from the athletics meeting

Example
As an example, we use here a data set issued from a questionnaire about French women's work in 1974. You can
load the data set here [2].

Presentation of the data
1724 women have answered several questions about women's work among which:

   * What do you think the perfect family is ?

         o Both husband and wife work

         o Husband works more than wife

         o Only husband works

   * Which activity is the best for a mother when children go to school?

         o Stay at home

         o Part-time work

         o Full-time work

   * What do you think of the following sentence: women who do not work feel cut off from the world?

         o Totally agree

         o Quite agree

         o Quite disagree

         o Totally disagree

The data set is two contingency tables which cross the answers of the first question with the two others. To each
crossing, the value given is the number of women who gave both answers.

http://en.wikibooks.org/w/index.php?title=File%3APrincipal-component-analysis-activar.PNG
http://factominer.free.fr/classical-methods/datasets/women_work.txt
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To load the package and the data set, write the following line code:
    library(FactoMineR) 

    women_work=read.table("http:/ / factominer. free. fr/ classical-methods/ datasets/ women_work. txt", header=TRUE, row.names=1, sep="\t")

Objectives
The objectives of CA are quite the same as PCA's: to get a typology of rows and columns and to study the link
between these two typologies. However, the concept of similarity between rows or columns is different. Here,
similarity between two rows or two columns is completely symmetric. Two rows (resp. columns) will be close to
each other if they associate with the columns (resp. rows) in the same way.
We are looking for the rows (resp. columns) whose distribution is the most different from the population's. The ones
which look the most or the less alike. Each group of rows (resp. columns) is characterized by the columns (resp.
rows) to which it is too much or to little associated.

CA
We are going to use the first three columns (corresponding to the answers to the second question) as active variables
and the four last ones (corresponding to the third question) as supplementary variables.
Active rows and columns only
To see the scatterplots of rows and columns separately, type:

    res.ca.rows = CA(women_work[,1:3], invisible="col")

    res.ca.col = CA(women_work[,1:3], invisible="row") 

    #women_work: the data set used

    #invisible: elements we do not want to be plotted

http://en.wikibooks.org/w/index.php?title=File%3AWomen_work.PNG
http://factominer.free.fr/classical-methods/datasets/women_work.txt
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On the scatterplot of the columns, we can see that the first axis opposes "Stay at home" and "Full-time work", which
means it opposes two women's profiles. Women who answered "Stay at home" answered "Only husband works"
more often than the population and "Both husband and wife work" less often than the population. In the same way,
women who answered "Full-time work" answered "Only husband works" less often than the population and "Both
husband and wife work" more often than the population. The first axis orders the categories of the second question
from the less to the most in favour of women's work.
We can make the same interpretation for the first axis of the row's scatterplot. The categories are sorted from the less
("Only husband works") to the most ("Both husband and wife work") in favour of women's work.
To have the representation of both rows and columns, type:

    res.ca = CA(women_work[,1:3]) 

    #women_work: the data set used

"Stay at home" is much associated with "Only husband works" and little associated to the two other categories.
"Both husband and wife work" is associated with "Full-time work" and opposed to "Stay at home".
Addition of supplementary columns
We now add the columns corresponding to the third question as supplementary variables. Type:

    res.ca = CA(women_work, col.sup=4:ncol(women_work)) 

    #women_work: the data set used

    #col.sup: vector of the indexes of the supplementary columns

"Totally agree" and "Quite agree" for "Women who do not work feel cut off from the world" are close to categories
in favour of women's work. "Quite disagree" and "Totally "disagree" are close to categories opposed to women's
work.

http://en.wikibooks.org/w/index.php?title=File%3ACorrespondence-analysis-columns.PNG
http://en.wikibooks.org/w/index.php?title=File%3ACorrespondence-analysis-rows.PNG
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nnet
This chapter introduces the Feed-Forward Neural Network package for prediction and classification data. An
artificial neural network (ANN), usually called "neural network" (NN), is a mathematical model or computational
model that is inspired by the structure and/or functional aspects of biological neural networks. A neural network
consists of an interconnected group of artificial neurons, and it processes information using a connectionist approach
to computation. In most cases an ANN is an adaptive system that changes its structure based on external or internal
information that flows through the network during the learning phase. Modern neural networks are non-linear
statistical data modeling tools. They are usually used to model complex relationships between inputs and outputs or
to find patterns in data. In this chapter will explore the use of feed-forward neural network through the package
NNET[1][2] created by Ridley.

Feed-Forward Neural Network
A feedforward neural network is an artificial neural network where connections between the units do not form a
directed cycle. This is different from recurrent neural networks.
The feedforward neural network was the first and arguably simplest type of artificial neural network devised. In this
network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if
any) and to the output nodes. There are no cycles or loops in the network.

ADALINE
ADALINE stands for Adaptive Linear Element. It was developed by Professor Bernard Widrow and his graduate
student Ted Hoff at Stanford University in 1960. It is based on the McCulloch-Pitts model and consists of a weight, a
bias and a summation function.

Operation: 

Its adaptation is defined through a cost function (error metric) of the residual where is the

desired input. With the MSE error metric the adapted weight and bias become:

and 

The Adaline has practical applications in the controls area. A single neuron with tap delayed inputs (the number of 
inputs is bounded by the lowest frequency present and the Nyquist rate) can be used to determine the higher order 
transfer function of a physical system via the bi-linear z-transform. This is done as the Adaline is, functionally, an 
adaptive FIR filter. Like the single-layer perceptron, ADALINE has a counterpart in statistical modelling, in this

http://factominer.free.fr/index.html
http://factominer.free.fr/docs/article_FactoMineR.pdf
http://cran.r-project.org
http://cran.r-project.org/web/packages/FactoMineR/FactoMineR.pdf
http://factominer.free.fr/classical-methods/datasets/women_work.txt
http://factominer.free.fr/index.html
http://factominer.free.fr/docs/article_FactoMineR.pdf
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case least squares regression.
There is an extension of the Adaline, called the Multiple Adaline (MADALINE) that consists of two or more
adalines serially connected.

NNET Package
The package NNET created by Ripley provides methods for using feed-forward neural networks with a single hidden
layer, and for multinomial log-linear models. Specifically, this chapter of the book will be portrayed NNET method.
Below is briefly described the method and parameters used.
The implementation of NNET for Feed-Forward Neural Network for R is available on CRAN [2] and already is
embbed in Environment R:
• nnet [3]

Description
Fit single-hidden-layer neural network, possibly with skip-layer connections.

//Usage

nnet(x, ...)

//S3 method for class 'formula':

nnet(formula, data, weights, ...,

subset, na.action, contrasts = NULL)

//Default S3 method:

nnet(x, y, weights, size, Wts, mask,

linout = FALSE, entropy = FALSE, softmax = FALSE,

censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,

maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,

abstol = 1.0e-4, reltol = 1.0e-8, ...)

Arguments
• formula A formula of the form class ~ x1 + x2 + ...
• x matrix or data frame of x values for examples.
• y matrix or data frame of target values for examples.
• weights (case) weights for each example – if missing defaults to 1.
• size number of units in the hidden layer. Can be zero if there are skip-layer units.
• data Data frame from which variables specified in formula are preferentially to be taken.
• subset An index vector specifying the cases to be used in the training sample. (NOTE: If given, this argument

must be named.)
• na.action A function to specify the action to be taken if NAs are found. The default action is for the procedure to

fail. An alternative is na.omit, which leads to rejection of cases with missing values on any required variable.
(NOTE: If given, this argument must be named.)

• contrasts a list of contrasts to be used for some or all of the factors appearing as variables in the model formula.
• Wts initial parameter vector. If missing chosen at random.
• mask logical vector indicating which parameters should be optimized (default all).

http://en.wikibooks.org/w/index.php?title=Least_squares
http://en.wikibooks.org/w/index.php?title=Regression_analysis
http://cran.r-project.org
http://cran.r-project.org/web/packages/nnet/
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• linout switch for linear output units. Default logistic output units.
• entropy switch for entropy (= maximum conditional likelihood) fitting. Default by leastsquares.
• softmax switch for softmax (log-linear model) and maximum conditional likelihood fitting. linout, entropy,

softmax and censored are mutually exclusive.
• censored A variant on softmax, in which non-zero targets mean possible classes. Thus for softmax a row of (0, 1,

1) means one example each of classes 2 and 3, but for censored it means one example whose class is only known
to be 2 or 3.

• skip switch to add skip-layer connections from input to output.
• rang Initial random weights on [-rang, rang]. Value about 0.5 unless the inputs are large, in which case it should

be chosen so that rang * max(|x|) is about 1.
• decay parameter for weight decay. Default 0.
• maxit maximum number of iterations. Default 100.
• Hess If true, the Hessian of the measure of fit at the best set of weights found is returned as component Hessian.
• trace switch for tracing optimization. Default TRUE.
• MaxNWts The maximum allowable number of weights. There is no intrinsic limit in the code, but increasing

MaxNWts will probably allow fits that are very slow and time-consuming.
• abstol Stop if the fit criterion falls below abstol, indicating an essentially perfect fit.
• reltol Stop if the optimizer is unable to reduce the fit criterion by a factor of at least 1 - reltol.
• ... arguments passed to or from other methods.

Details
If the response in formula is a factor, an appropriate classification network is constructed; this has one output and
entropy fit if the number of levels is two, and a number of outputs equal to the number of classes and a softmax
output stage for more levels. If the response is not a factor, it is passed on unchanged to nnet.default.
Optimization is done via the BFGS method of optim.

Value
object of class nnet or nnet.formula. Mostly internal structure, but has components
• wts the best set of weights found.
• value value of fitting criterion plus weight decay term.
• fitted.values the fitted values for the training data.
• residuals the residuals for the training data.
• convergence 1 if the maximum number of iterations was reached, otherwise 0.

'''Utilizing Example'''

//use half the iris data

library(“nnet”)

ir <- rbind(iris3[,,1],iris3[,,2],iris3[,,3])

targets <- class.ind( c(rep("s", 50), rep("c", 50), rep("v", 50)) )

samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25))

ir1 <- nnet(ir[samp,], targets[samp,], size = 2, rang = 0.1,
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decay = 5e-4, maxit = 200)

test.cl <- function(true, pred) {

   true <- max.col(true)

   cres <- max.col(pred)

   table(true, cres)

}

test.cl(targets[-samp,], predict(ir1, ir[-samp,]))

// or

library(“nnet”)

ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),

species = factor(c(rep("s",50), rep("c", 50), rep("v", 50))))

ir.nn2 <- nnet(species ~ ., data = ird, subset = samp, size = 2, rang = 0.1,

decay = 5e-4, maxit = 200)

table(ird$species[-samp], predict(ir.nn2, ird[-samp,], type = "class"))

Study Case
The case study is designed to illustrate just one among many possible applications of the package NNET.

Scenario
Accurate diagnosis may avoid complications for patients. Desiring to establish whether a patient has breast cancer,
the analysis of several factors help determine an accurate diagnosis. Thus, from the collection of data from many
patients seek to infer the diagnosis of patients with satisfactory accuracy.

Data Details
The data used in this case study are from a database of the UCI [13][4][5][6][7]. The database consists of 10 variables
(9 input and 1 output) having 569 instances of records of patients diagnosed.
Input

•• Clump Thickness
•• Uniformity of Cell Size
•• Uniformity of Cell Shape
•• Marginal Adhesion
•• Single Epithelial Cell Size
•• Bare Nuclei
•• Bland Chromatin
•• Normal Nucleoli
•• Mitoses
Output (Class)

•• Diagnostic: Benign or Malignant

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Packages/nnet#endnote_Wolberg90a
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http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Packages/nnet#endnote_Mangasarian92
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Execution and Results
The implementation using the package is pretty simple. Below is the part of the training and test data.

trainingInput <- read.table("trainingInput.data", sep=", ", header=TRUE)

trainingOutput <- read.table("trainingOutput.data", sep=",", header=TRUE)

library("nnet")

neuralNetworkModel <- nnet(trainingInput, trainingOutput, size = 19, rang = 0.1, decay = 5e-4, maxit = 2000)

neuralNetworkTest <- function(true, pred) {

      true <- max.col(true)

      cres <- max.col(pred)

      table(true, cres)

}

neuralNetworkTest(trainingOutput, predict(neuralNetworkModel, 

trainingInput))

As a result of the training function neuralNetoworkModel <- nnet (...) has the steps of iteration and approximation of
operations in accordance with the parameters set for rang, decay and maxit.

  # weights:  230

  initial  value 146.391298 

  iter  10 value 14.225442

  iter  20 value 0.478782

  iter  30 value 0.149068

  iter  40 value 0.140717

  iter  50 value 0.131745

  iter  60 value 0.124368

  iter  70 value 0.116663

  …
  iter 740 value 0.086414

  iter 750 value 0.086414

  final  value 0.086414 

  converged

After training, there is confusion over the matrix (function neuralNetworkTest) the results obtained. From the matrix
it is possible to apply various metrics for information as accuracy, error, among others.

       cres

   true  1    2

     1  180   0

     2   0   120

From this matrix, we find that the test was very successful, being that True Positive = (1,1), False Positive = (1,2),
False Negative = (2,1) and True Negative (2,2).
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Analysis
From this case study, the neural net model obtained from data sets of patients are sufficient to provide a reliable
diagnosis. But for this, the patient data must respect the reality of the model represented by the network, otherwise
the ANN present a misdiagnosis. Thus, it is noted that the package NNET is convenient to use, making it accessible
to various distinct audiences, which may make use of it without needing a thorough knowledge on the subject.
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